Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper describes influence of cargo lorry traveling at high speed under a lightweight footbridge on the structure vibrations. The unsteady CFD simulations were performed to obtain aerodynamic load functions on the footbridge. These loads were introduced to nonlinear structural dynamics transient calculation to obtain footbridge response. The influence of aerodynamic forces was evaluated in terms of pedestrian comfort and safety. Parametric study of the influence of vehicle speed, structure clearance, cabin deflectors and distance between lorries grouped in convoy is also presented.

Go to article

Authors and Affiliations

P. Żółtowski
J. Piechna
K. Żółtowski
H. Zobel
Download PDF Download RIS Download Bibtex

Abstract

The main issue of this article are eco-bridges, pedestrian-friendly imaginary sites (enclave) of greenery in urban tissues. Discussed cases include the implementations of projects such as: the High Line in New York and the Garden Bridge in London. The main theme of the article is to compare the green bridges in the urban tissue embedded with “living root bridges”. The author of the article highlights the potential limits for “living root bridges” in the urban tissue, resulting from the climate, time of their creation and limits of urban space. She also notes the strong tendency to create green areas in the “concrete” urban structure, but also the use of artificial materials in tissue of “living root bridges”.

Go to article

Authors and Affiliations

Aneta Sarga
Download PDF Download RIS Download Bibtex

Abstract

The state of the art in the field of composite polymer bridges in Poland is presented below. Such bridges were built from 1999. Some of them are fully composite polymer structure. Others are developed as hybrid structure. There are two kind of structures: steel girders with FRP deck and FRP girders with concrete deck. Different production methods of FRP elements were used: pultrusion and infusion. Some bridges are the result of research programs, but there are also some commercial projects. Also, the short application history of FRP bridges all over the world is presented and material properties of the construction material are given in the paper. Those materials are much more lighter than steel or concrete. Low weight of FRP materials is an advantage but also disadvantage. It is good from structural and economical point of view because the dimensions of girders, piers and foundation will be smaller. From opposite side to light structure could cause problems related to response of structure against dynamic actions. As a final result the fatigue strength and durability will be reduced. Of course, the high cost of FRP (CFRP especially) limits at the moment range of application. The presented in the paper bridge structures show that despite of mentioned above problems they are now in good conditions and their future life looks optimistic. It could be supposed that modification and/or development of FRP production technologies more better utilizing their properties will create more elegant and useful bridges.
Go to article

Bibliography


[1] Chróścielewski J., Miśkiewicz M., Pyrzowski Ł, Wilde K., “Composite GFRP U-shaped footbridge”, Polish Maritime Research, Special Issue 2017 S1 (93) 2017 Vol. 24, pp. 25–31.
[2] Chróścielewski J., Miśkiewicz M., Pyrzowski Ł, Sobczyk B., Wilde K., “A novel sandwich footbridge – Practical application of laminated composites in bridge design and in situ measurements of static response”, Composites Part B Vol. 126, 2017, pp. 153–161.
[3] De Corte W., Jansseune A., Van Paepegem W., Peeters J., “Structural behaviour and robustness assessment of an InfraCore inside bridge deck specimen subjected to static and dynamic local loading”, Proceedings of the 21st International Conference on Composite Materials, Xi’an, 2017.
[4] Dong C.J., “Development of a process model for the vacuum assisted resin transfer molding simulation by the response surface method”, Composites: Part A Vol. 37, 2006, pp. 1316–1324.
[5] Grotte, B., Karwowski W., Mossakowski, P., Wróbel, M., Zobel, H., Żółtowski, P.: Steel, arch footbridge with composite polymer deck. „Wroclaw Bridge Days” - „Footbridges – Architecture, design, construction, research”. 29–30 November 2007, pp. 135–146.
[6] Grotte B., Karwowski W., Mossakowski P., Wróbel M., Zobel H., Żółtowski P., “Steel, arch footbridge with composite polymer deck with suspended composite polymer deck over S-11 highway nearby Kórnik”, Inżynieria i Budownictwo 1-2/2009, pp. 69–73.
[7] Karwowski W., “Material - structural conditions of joints in FRP bridges”, Ph. D. thesis, Warsaw University of Technology, Warsaw 2011.
[8] Madaj A., “Composite polymer bridges. New structural solutions of bridge girders”, Mosty 3/2015, pp. 58-60.
[9] Mossakowski P., Wróbel M., Zobel H., Żółtowski P. ,Pedestrian steel arch bridge with composite polymer deck. IV International Conference on “Current and future trends in bridge design, construction and maintenance”. Kuala Lumpur. Malaysia. October 2005.
[10] Mylavarapu R., Patnaik A., Puli K., R. K., “Basalt FRP: A new FRP material for infrastructure market?”, Proceedings of 4th International Conference on Advanced Composite Materials in Bridges and Structures, Canadian Society of Civil Engineers, Montreal, 2004.
[11] Patnaik A., “Applications of basalt fiber reinforced polymer (BFRP) reinforcement for transportation infrastructure”. Developing a Research Agenda for Transportation Infrastructure, TRB November, 2009.
[12] Pilarczyk K., “Application of composite panels InfraCore inside bridge structures”, Mosty 5/ 2019, pp. 74–75.
[13] Siwowski T., Kaleta D., Rajchel M., “Structural behaviour of an all-composite road bridge”, Composite Structures 192: pp. 555–567, 2018.
[14] Siwowski T., Rajchel M., Własak L., “Experimental study on static and dynamic performance of a novel GFRP bridge girder”, Composite Structures Vol. 259, 2021.
[15] Siwowski T., Rajchel M., Kulpa M, “Design and field evaluation of a hybrid FRP composite – lightweight concrete road bridge”, Composite Structures, Vol. 230, 2019.
[16] Siwowski T., Rajchel M., “Structural performance of a hybrid FRP composite – lightweight concrete bridge girder”, Composites Part B Vol. 174, 2019.
[17] Wąchalski K., “The design of renovation and widening of the J. Piłsudskiego bridge across Vistula river in Toruń, Poland”, Mosty 1/2021, pp. 50–56, (in Polish).
[18] Zobel H., Karwowski W, Wróbel M., „GFRP pedestrianbridge”, Inżynieria i Budownictwo nr 2/2003, pp. 107–108, (in Polish).
[19] Zobel H., “Composite Polymer Bridges”, Proceedings of 50-tie Conference „Scientific and Research Problems in Civil Engineering”, Krynica 2004, Vol I, pp. 381–410 (in Polish).
[20] Zobel H., Grotte B., Karwowski W., Wasiliew P., Wrobel M., Zoltowski P.: Pedestrian steel arch bridge with composite polymer deck and CFRP stays. IABSE Symposium “Metropolitan Habitats and Infrastructure”. Shanghai, China. September 2004. pp. 88–89 + CD.
[21] Zobel H., Karwowski W., Bridge composite polymer decks. Inżynieria i Budownictwo 11/2005, pp. 594–598. (in Polish).
[22] PN-EN 13706-3: 2004 Composite polymers. Technical Specifications for the profiles produced with pultrusion method. Part 3: Detailed requirements.
[23] http://www.mdacomposites.org/, 2005.
[24] Information Materials of the Mostostal Warszawa S.A. “Com-bridge – construction of the FRP structure”, 2016.
[25] Report of the Research Project “Material and structural conditions for joints in bridge structures made of FRP profiles realized in the Faculty of Civil Engineering at Warsaw University of Technology”. The project realized in 2005–2008 and financed by the Polish Ministry of Education and Science.
[26] https://fiberline.com/, 2021.
[27] https://www.kolbudy.pl, 2021.
Go to article

Authors and Affiliations

Tomasz Siwowski
1
ORCID: ORCID
Henryk Zobel
2
ORCID: ORCID
Thakaa Al-Khafaji
2
ORCID: ORCID
Wojciech Karwowski
2
ORCID: ORCID

  1. Rzeszow University of Technology, Faculty of Civil & Environmental Engineering & Architecture, ul. Powstancow Warszawy 12, 35-859 Rzeszow, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The topic of smart structures, their active control and implementation, is relatively new. Therefore, different approaches to the problem can be met. The present paper discusses variable aspects of the active control of structures. It explains the idea of smart systems, introduces different terms used in smart technique and defines the structural smartness. The author indicates differences between actively controlled structures and structural health monitoring systems and shows an example of an actively controlled smart footbridge. The analyses presented in the study concern tensegrity structures, which are prone to the structural control through self-stress state adjustment. The paper introduces examples of structural control performed on tensegrity modules and plates. An influence of several self-stress states on displacements is analyzed and a study concerning damage due to member loss is presented.

Go to article

Authors and Affiliations

A. Al Sabouni-Zawadzka
Download PDF Download RIS Download Bibtex

Abstract

Footbridges, like all building structures, must be designed in a way that ensures their safe and comfortable use. Steel footbridges characterised by low vibration damping often turn out to be a structure susceptible to the dynamic influence of users during various forms of their activity. For these structures, the impact of running users may be a key type of dynamic load for the verification of the serviceability limit state due to vibrations. In the literature, there are several proposals for models of dynamic load generated by runners (models of ground reaction forces – GRF). The paper presents the characteristics, analyses and comparisons of selected GRF load models. The analyses were performed using the GRF recorded during the laboratory tests of runners (tests planned and carried out by the author) and the GRF determined using various load models. In order to illustrate the accuracy of the estimation of the dynamic response of the structure, depending on the GRF model used, dynamic field tests and dynamic numerical analyses of the selected steel footbridge were carried out. The obtained results were analysed and compared.
Go to article

Authors and Affiliations

Marek Pańtak
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, Warszawska 24, 31-155 Krakow, Poland

This page uses 'cookies'. Learn more