Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we consider an optimal control problem in which a dynamical system is controlled by a nonlinear Caputo fractional state equation. First we get the linearized maximum principle. Further, the concept of a quasi-singular control is introduced and, on this basis, an analogue of the Legendre-Clebsch conditions is obtained. When the analogue of Legendre- Clebsch condition degenerates, a necessary high-order optimality condition is derived. An illustrative example is considered.
Go to article

Authors and Affiliations

Shakir Sh. Yusubov
1
Elimhan N. MahmudoV
2 3
ORCID: ORCID

  1. Department of Mechanics and Mathematics, Baku State University, Baku, Azerbaijan
  2. Department of Mathematics, Istanbul Technical University, Istanbul, Turkey
  3. Azerbaijan National Aviation Academy, Baku, Azerbaijan
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses the different methods used for calculating first- and second-order sensitivity: the direct differentiation method, the adjoint variables method, and the hybrid method. The solutions obtained allow determining the sensitivity of dynamic characteristics such as eigenvalues and eigenvectors, natural frequencies, and nondimensional damping ratios. The methods were applied for analyzing systems with viscoelastic damping elements, whose behavior can be described by classical and fractional rheological models. However, the derived formulas are general and can also be applied to systems with damping elements described by other models. Their advantage is a compact and easy to code form. The paper also presents a comparison of the computational costs of the discussed methods. The correctness of all the proposed methods has been illustrated with numerical examples.
Go to article

Bibliography

[1] M. Zhang and R. Schmidt. Sensitivity analysis of an auto-correlation-function-based damage index and its application in structural damage detection. Journal of Sound and Vibration, 333(26):7352–7363, 2014. doi: 10.1016/j.jsv.2014.08.020.
[2] T.W. Kim and J.H. Kim. Eigensensitivity based optima distribution of a viscoelastic damping layer for a flexible beam. Journal of Sound and Vibration, 273(1-2):201–218, 2004. doi: 0.1016/S0022-460X(03)00479-6.
[3] F. van Keulen, R.T. Haftka, and N.H. Kim. Review of options for structural design sensitivity analysis. Part 1: Linear systems. Computer Methods in Applied Mechanics and Engineering, 194(30-33):3213–3243, 2005. doi: 0.1016/j.cma.2005.02.002.
[4] D.A. Tortorelli and P. Michaleris. Design sensitivity analysis: Overview and review. Inverse Problems in Engineering, 1(1):71–105, 1994, doi: 10.1080/174159794088027573.
[5] R.L. Fox and M.P. Kapoor. Rates of change of eigenvalues and eigenvectors. AIAA Journal, 6(12):2426–2429, 1968. doi: 10.2514/3.5008.
[6] S. Adhikari and M.I. Friswell. Eigenderivative analysis of asymmetric non-conservative systems. International Journal for Numerical Methods in Engineering, 51(6):709–733, 2001. doi: 10.1002/NME.186.
[7] R.B. Nelson. Simplified calculation of eigenvector derivatives. AIAA Journal, 14(9):1201–1205, 1976. doi: 10.2514/3.7211.
[8] M.I. Friswell and S. Adhikari. Derivatives of complex eigenvectors using Nelson’s method. AIAA Journal, 38(12):2355–2357, 2000. doi: 10.2514/2.907.
[9] S. Adhikari and M.I. Friswell. Calculation of eigenrelation derivatives for nonviscously damped systems using Nelson’s method. AIAA Journal, 44(8):1799–1806, 2006. doi: 10.2514/1.20049.
[10] L. Li, Y. Hu, X. Wang, and L. Ling. Eigensensitivity analysis of damped systems with distinct and repeated eigenvalues. Finite Elements in Analysis and Design, 72:21–34, 2013. doi: 10.1016/j.finel.2013.04.006.
[11] L. Li, Y. Hu, and X. Wang. A study on design sensitivity analysis for general nonlinear eigenproblems. Mechanical Systems and Signal Processing, 34(1-2):88–105, 2013. doi: 10.1016/j.ymssp.2012.08.011.
[12] T.H. Lee. An adjoint variable method for structural design sensitivity analysis of a distinct eigenvalue problem. KSME International Journal, 13(6):470–476, 1999. doi: 10.1007/BF02947716.
[13] T.H. Lee. Adjoint method for design sensitivity analysis of multiple eigenvalues and associated eigenvectors. AIAA Journal, 45(8):1998–2004, 2007. doi: 10.2514/1.25347.
[14] S. He, Y. Shi, E. Jonsson, and J.R.R.A. Martins. Eigenvalue problem derivatives computation for a complex matrix using the adjoint method. Mechanical Systems and Signal Processing, 185:109717, 2023. doi: 10.1016/j.ymssp.2022.109717.
[15] R. Lewandowski and M. Łasecka-Plura. Design sensitivity analysis of structures with viscoelastic dampers. Computers and Structures, 164:95–107, 2016. doi: 10.1016/j.compstruc.2015.11.011.
[16] Z. Ding, L. Li, G. Zou, and J. Kong. Design sensitivity analysis for transient response of non-viscously damped systems based on direct differentiate method. Mechanical Systems and Signal Processing, 121:322–342, 2019. doi: 10.1016/j.ymssp.2018.11.031.
[17] Z. Ding, J. Shi, Q. Gao, Q. Huang, and W.H. Liao. Design sensitivity analysis for transient responses of viscoelastically damped systems using model order reduction techniques. Structural and Multidisciplinary Optimization, 64:1501–1526, 2021. doi: 10.1007/s00158-021-02937-9.
[18] R. Haftka. Second-order sensitivity derivatives in structural analysis. AIAA Journal, 20(12):1765–1766, 1982. doi: 10.2514/3.8020.
[19] M.S. Jankovic. Exact nth derivatives of eigenvalues and eigenvectors. Journal of Guidance, Control, and Dynamics, 17(1):136–144, 1994. doi: 10.2514/3.21170.
[20] J.Y. Ding, Z.K. Pan, and L.Q. Chen. Second-order sensitivity analysis of multibody systems described by differential/algebraic equations: adjoint variable approach. International Journal of Computer Mathematics, 85(6):899–913, 2008. doi: 10.1080/00207160701519020.
[21] M. Martinez-Agirre and M.J. Elejabarrieta. Higher order eigensensitivities-based numerical method for the harmonic analysis of viscoelastically damped structures. International Journal for Numerical Methods in Engineering, 88(12):1280–1296, 2011. doi: 10.1002/nme.3222.
[22] H. Kim and M. Cho. Study on the design sensitivity analysis based on complex variable in eigenvalue problem. Finite Elements in Analysis and Design, 45:892–900, 2009. doi: 10.1016/j.finel.2009.07.002.
[23] A. Bilbao, R. Aviles, J. Aguirrebeitia, and I.F. Bustos. Eigensensitivity-based optimal damper location in variable geometry trusses. AIAA Journal, 47(3):576–591, 2009. doi: 10.2514/1.37353.
[24] R.M. Lin, J.E. Mottershead, and T.Y. Ng. A state-of-the-art review on theory and engineering applications of eigenvalue and eigenvector derivatives. Mechanical Systems and Signal Processing, 138:106536, 2020. doi: 10.1016/j.ymssp.2019.106536.
[25] R. Lewandowski, A. Bartkowiak, and H. Maciejewski. Dynamic analysis of frames with viscoelastic dampers: a comparison of dampers models. Structural Engineering and Mechanics, 41(1):113–137, 2012. doi: 10.12989/sem.2012.41.1.113.
[26] S.W. Park. Analytical modeling of viscoelastic dampers for structural and vibration control. International Journal of Solids and Structures, 38(44-45):8065–8092, 2001. doi: 10.1016/S0020-7683(01)00026-9.
[27] R. Lewandowski. Sensitivity analysis of structures with viscoelastic dampers using the adjoint variable method. Civil-Comp Proceedings, 106, 2014.
[28] J.S. Arora and J.B. Cardoso. Variational principle for shape design sensitivity analysis. AIAA Journal, 30(2):538–547, 1992. doi: 10.2514/3.10949.
[29] Z. Pawlak and R. Lewandowski. The continuation method for the eigenvalue problem of structures with viscoelastic dampers. Computers and Structures, 125:53–61, 2013. doi: 10.1016/j.compstruc.2013.04.021.
[30] R. Lewandowski and M. Baum. Dynamic characteristics of multilayered beams with viscoelastic layers described by the fractional Zener model. Archive of Applied Mechanics, 85(12):1793–1814, 2015. doi: 10.1007/s00419-015-1019-2.
[31] R. Lewandowski, P. Litewka and P. Wielentejczyk. Free vibrations of laminate plates with viscoelastic layers using the refined zig-zag theory – Part 1: Theoretical background. Composite Structures, 278:114547, 2021. doi: 10.1016/j.compstruct.2021.114547.
[32] M. Kamiński, A. Lenartowicz, M. Guminiak, and M. Przychodzki. Selected problems of random free vibrations of rectangular thin plates with viscoelastic dampers. Materials, 15(19): 6811, 2022. doi: 10.3390/ma15196811.
Go to article

Authors and Affiliations

Magdalena Łasecka-Plura
1
ORCID: ORCID

  1. Poznan University of Technology, Institute of Structural Analysis, Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this work, we present optimal control formulation and numerical algorithm for fractional order discrete time singular system (DTSS) for fixed terminal state and fixed terminal time endpoint condition. The performance index (PI) is in quadratic form, and the system dynamics is in the sense of Riemann-Liouville fractional derivative (RLFD). A coordinate transformation is used to convert the fractional-order DTSS into its equivalent non-singular form, and then the optimal control problem (OCP) is formulated. The Hamiltonian technique is used to derive the necessary conditions. A solution algorithm is presented for solving the OCP. To validate the formulation and the solution algorithm, an example for fixed terminal state and fixed terminal time case is presented.
Go to article

Bibliography

[1] G.W. Leibniz and C.I. Gerhardt: Mathematische Schriften. Hildesheim, G. Olms, 1962.
[2] I. Podlubny: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. 1st edition, 198. San Diego, Academic Press, 1998.
[3] J.A. Tenreiro Machado et al.: Some applications of fractional calculus in engineering. Mathematical Problems in Engineering, 2010, (2009), p. e639801, DOI: 10.1155/2010/639801.
[4] T. Yuvapriya, P. Lakshmi, and S. Rajendiran: Vibration control and performance analysis of full car active suspension system using fractional order terminal sliding mode controller. Archives of Control Sciences, 30(2), (2020), 295–324, DOI: 10.24425/ACS.2020.133501.
[5] D.S. Naidu: Optimal Control Systems. 1st edition, CRC Press, 2018.
[6] O.P. Agrawal: A general formulation and solution scheme for fractional optimal Control problems. Nonlinear Dynamics, 38(1), (2004), 323–337, DOI: 10.1007/s11071-004-3764-6.
[7] T. Chiranjeevi and R.K. Biswas: Formulation of optimal control problems of fractional dynamic systems with control constraints. Journal of Advanced Research in Dynamical and Control Systems, 10(3), (2018), 201–212.
[8] R.K. Biswas and S. Sen: Fractional optimal control problems with specified final time. Journal of Computational and Nonlinear Dynamics, 6(021009), (2010), DOI: 10.1115/1.4002508.
[9] R.K. Biswas and S. Sen: Free final time fractional optimal control problems. Journal of the Franklin Institute, 351(2), (2014), 941–951, DOI: 10.1016/j.jfranklin.2013.09.024.
[10] R.K. Biswas and S. Sen: Numerical method for solving fractional optimal control problems. In: Proceedings of the ASME IDETC/CIE Conference, (2010), 1205–120, DOI: 10.1115/DETC2009-87008.
[11] C. Tricaud and Y. Chen: An approximate method for numerically solving fractional order optimal control problems of general form. Computers & Mathematics with Applications, 59(5), (2010), 1644–1655, DOI: 10.1016/j.camwa.2009.08.006.
[12] Y. Ding, Z. Wang, and H. Ye: Optimal control of a fractional-order HIVimmune system with memory. IEEE Transactions on Control Systems Technology, 20(3), (2012), 763–769, DOI: 10.1109/TCST.2011.2153203.
[13] T. Chiranjeevi and R.K. Biswas: Closed-form solution of optimal control problem of a fractional order system. Journal of King Saud University – Science, 31(4), (2019), 1042–1047, DOI: 10.1016/j.jksus.2019.02.010.
[14] R. Dehghan and M. Keyanpour: A semidefinite programming approach for solving fractional optimal control problems. Optimization, 66(7), (2017), 1157–1176, DOI: 10.1080/02331934.2017.1316501.
[15] M. Dehghan, E.-A. Hamedi, and H. Khosravian-Arab: A numerical scheme for the solution of a class of fractional variational and optimal control problems using the modified Jacobi polynomials. Journal of Vibration and Control, 22(6), (2016), 1547–1559, DOI: 10.1177/1077546314543727.
[16] S. Yousefi, A. Lotfi, and M. Dehghan: The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems. Journal of Vibration and Control, 17(13), (2011), 2059–2065, DOI: 10.1177/1077546311399950.
[17] M. Gomoyunov: Optimal control problems with a fixed terminal time in linear fractional-order systems. Archives of Control Sciences, 30(2), (2019), 295–324, DOI: 10.24425/acs.2020.135849.
[18] T. Chiranjeevi and R.K. Biswas: Discrete-time fractional optimal control. Mathematics, 5(2), (2017), DOI: 10.3390/math5020025.
[19] A. Dzielinski and P.M. Czyronis: Fixed final time and free final state optimal control problem for fractional dynamic systems – linear quadratic discrete-time case. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(3), (2013), 681–690, DOI: 10.2478/bpasts-2013-0072.
[20] T. Chiranjeevi, R.K. Biswas, and N.R. Babu: Effect of initialization on optimal control problem of fractional order discrete-time system. Journal of Interdisciplinary Mathematics, 23(1), (2020), 293–302, DOI: 10.1080/09720502.2020.1721924.
[21] P.M. Czyronis: Dynamic programming problem for fractional discretetime dynamic systems. Quadratic index of performance case. Circuits, Systems, and Signal Processing, 33(7), 2131–2149, DOI: 10.1007/s00034-014-9746-0.
[22] J.J. Trujillo and V.M. Ungureanu: Optimal control of discrete-time linear fractional order systems with multiplicative noise. International Journal of Control, 91(1), (2018), 57–69, DOI: 10.1080/00207179.2016.1266520.
[23] A. Ruszewski: Stability of discrete-time fractional linear systems with delays. Archives of Control Sciences, 29(3), (2019), 549–567, DOI: 10.24425/acs.2019.130205.
[24] L.Dai: Singular Control Systems. Berlin Heidelberg, Springer-Verlag, 1989, DOI: 10.1007/BFb0002475.
[25] R.K. Biswas and S. Sen: Fractional optimal control problems: a pseudostate- space approach. Journal of Vibration and Control, 17(7), (2011), 1034–1041, DOI: 10.1177/1077546310373618.
[26] R.K. Biswas and S. Sen: Fractional optimal control within Caputo’s derivative. In: Proceedings of the ASME IDETC/CIE Conference, (2012), 353– 360, DOI: 10.1115/DETC2011-48045.
[27] T. Chiranjeevi, R.K. Biswas, and C. Sethi: Optimal control of fractional order singular system. The International Journal of Electrical Engineering & Education, p. 0020720919833031, (2019), DOI: 10.1177/0020720919833031.
[28] T. Chiranjeevi and R.K. Biswas: Numerical approach to the fractional optimal control problem of continuous-time singular system. In: Advances in Electrical Control and Signal Systems, Singapore, (2020), 239–248, DOI: 10.1007/978-981-15-5262-5_16.
[29] T. Chiranjeevi and R.K. Biswas: Linear quadratic optimal control problem of fractional order continuous-time singular system. Procedia Computer Science, 171 (2020), 1261–1268, DOI: 10.1016/j.procs.2020.04.134.
[30] M.R.A. Moubarak, H.F. Ahmed, and O. Khorshi: Numerical solution of the optimal control for fractional order singular systems. Differential Equations and Dynamical Systems, 26(1), (2018), 279–291, DOI: 10.1007/s12591-016-0320-z.
[31] T. Chiranjeevi, R.K. Biswas, and S.K. Pandey: Fixed final time and fixed final state linear quadratic optimal control problem of fractional order singular system. In: Computing Algorithms with Applications in Engineering, Singapore, (2020), 285–294. DOI: 10.1007/978-981-15-2369-4_24.
[32] Muhafzan, A. Nazra, L. Yulianti, Zulakmal, and R. Revina: On LQ optimization problem subject to fractional order irregular singular systems. Archives of Control Sciences, 30(4), (2020), 745–756, DOI: 10.24425/acs.2020.135850.
[33] T. Chiranjeevi and R.K. Biswas: Computational method based on reflection operator for solving a class of fractional optimal control problem. Procedia Computer Science, 171 (2020), 2030–2039, DOI: 10.1016/j.procs.2020.04.218.
[34] T. Chiranjeevi and R.K. Biswas: Numerical simulation of fractional order optimal control problem. Journal of Statistics and Management Systems, 23(6), (2020), 1069–1077, DOI: 10.1080/09720510.2020.1800188.
[35] T. Kaczorek: Singular fractional continuous-time and discrete-time linear systems. Acta Mechanica et Automatica, 7(1), (2013), 26–33, DOI: 10.2478/ama-2013-0005.
[36] T. Kaczorek: Selected Problems of Fractional Systems Theory. Berlin Heidelberg, Springer-Verlag, 2011, DOI: 10.1007/978-3-642-20502-6.
[37] T. Kaczorek: Polynomial and Rational Matrices: Applications in Dynamical Systems Theory. London, Springer-Verlag, 2007, DOI: 10.1007/978-1-84628-605-6.
Go to article

Authors and Affiliations

Tirumalasetty Chiranjeevi
1
Raj Kumar Biswas
2
Ramesh Devarapalli
3
ORCID: ORCID
Naladi Ram Babu
2
Fausto Pedro García Márquez
4

  1. Department of Electrical Engineering, Rajkiya Engineering College Sonbhadra, U. P., India
  2. Department of Electrical Engineering, National Institute of Technology, Silchar, India
  3. Department of Electrical Engineering, BIT Sindri, Dhanbad 828123, Jharkhand, India
  4. Ingenium Research Group, University of Castilla-La Mancha, Spain
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with an optimal control problem in a dynamical system described by a linear differential equation with the Caputo fractional derivative. The goal of control is to minimize a Bolza-type cost functional, which consists of two terms: the first one evaluates the state of the system at a fixed terminal time, and the second one is an integral evaluation of the control on the whole time interval. In order to solve this problem, we propose to reduce it to some auxiliary optimal control problem in a dynamical system described by a first-order ordinary differential equation. The reduction is based on the representation formula for solutions to linear fractional differential equations and is performed by some linear transformation, which is called the informational image of a position of the original system and can be treated as a special prediction of a motion of this system at the terminal time. A connection between the original and auxiliary problems is established for both open-loop and feedback (closed-loop) controls. The results obtained in the paper are illustrated by examples.

Go to article

Authors and Affiliations

Mikhail I. Gomoyunov
Download PDF Download RIS Download Bibtex

Abstract

In this paper we discuss the linear quadratic (LQ) optimization problem subject to fractional order irregular singular systems. The aim of this paper is to find the control-state pairs satisfying the dynamic constraint of the form a fractional order irregular singular systems such that the LQ objective functional is minimized. The method of solving is to convert such LQ optimization into the standard fractional LQ optimization problem. Under some particularly conditions we find the solution of the problem under consideration.

Go to article

Authors and Affiliations

Muhafzan
Admi Nazra
Lyra Yulianti
Zulakmal
Refi Revina
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the formulation and numerical simulation for linear quadratic optimal control problem (LQOCP) of free terminal state and fixed terminal time fractional order discrete time singular system (FODSS). System dynamics is expressed in terms of Riemann-Liouville fractional derivative (RLFD), and performance index (PI) in terms of state and costate. Because of its complexity, finding analytical and numerical solutions to singular system (SS) is difficult. As a result, we use coordinate transformation to convert FODSS to its corresponding fractional order discrete time nonsingular system (FODNSS). After that, we obtain the necessary conditions by employing a Hamiltonian approach. The relevant conditions are solved using the general solution approach. For the analysis of formulation and solution algorithm, a numerical example is illustrated. Results are obtained for various �� values. According to state of the art, this is the first time that a formulation and numerical simulation of free terminal state and fixed terminal time optimal control problem (OCP) of FODSS is presented.
Go to article

Authors and Affiliations

Tirumalasetty Chiranjeevi
1
Ramesh Devarapalli
2
ORCID: ORCID
Naladi Ram Babu
3
Kiran Babu Vakkapatla
4
R. Gowri Sankara Rao
5
Fausto Pedro Garcìa Màrquez
6

  1. Department of Electrical Engineering, Rajkiya Engineering College Sonbhadra, U.P., India
  2. Department of EEE, Lendi Institute of Engineering and Technology, Vizianagaram-535005, India
  3. Department of EEE, Aditya Engineering College, Surampalem, Andhra Pradesh, India
  4. Lingayas Institute of Management and Technology Madalavarigudem, A.P., India
  5. Department of EEE, MVGR College of Engineering Vizianagaram, A.P., India
  6. Ingenium Research Group, University of Castilla-La Mancha, Spain
Download PDF Download RIS Download Bibtex

Abstract

The increasing demand for high-speed rotor-bearing systems results in the application of complex materials, which allow for a better control of the vibrational characteristics. This paper presents a model of a rotor including viscoelastic materials and valid up to high spin speeds. Regarding the destabilization of rotor-bearing systems, two main effects have to be investigated, which are strongly related to the associated internal and external damping of the rotor. For this reason, the internal material damping is modeled using fractional time derivatives, which can represent a large class of viscoelastic materials over a wide frequency range. In this paper, the Numerical Assembly Technique (NAT) is extended for the rotating viscoelastic Timoshenko beam with fractional derivative damping. An efficient and accurate simulation of the proposed rotor-bearing model is achieved. Several numerical examples are presented and the influence of internal damping on the rotor-bearing system is investigated and compared to classical damping models.
Go to article

Authors and Affiliations

Gregor Überwimmer
1
ORCID: ORCID
Georg Quinz
1
Michael Klanner
1
ORCID: ORCID
Katrin Ellermann
1

  1. Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the numerical method of solving the one-dimensional subdiffusion equation with the source term is presented. In the approach used, the key role is played by transforming of the partial differential equation into an equivalent integro-differential equation. As a result of the discretization of the integro-differential equation obtained an implicit numerical scheme which is the generalized Crank-Nicolson method. The implicit numerical schemes based on the finite difference method, such as the Carnk-Nicolson method or the Laasonen method, as a rule are unconditionally stable, which is their undoubted advantage. The discretization of the integro-differential equation is performed in two stages. First, the left-sided Riemann-Liouville integrals are approximated in such a way that the integrands are linear functions between successive grid nodes with respect to the time variable. This allows us to find the discrete values of the integral kernel of the left-sided Riemann-Liouville integral and assign them to the appropriate nodes. In the second step, second order derivative with respect to the spatial variable is approximated by the difference quotient. The obtained numerical scheme is verified on three examples for which closed analytical solutions are known.
Go to article

Bibliography

  1.  T. Kosztołowicz, K. Dworecki, and S. Mrówczyński, “How to measure subdiffusion parameters,” Phys. Rev. Lett., vol. 94, p.  170602, 2005, doi: 10.1016/j.tins.2004.10.007.
  2.  T. Kosztołowicz, K. Dworecki, and S. Mrówczyński, “Measuring subdiffusion parameters,” Phys. Rev. E, vol. 71, p.  041105, 2005.
  3.  E. Weeks, J. Urbach, and L. Swinney, “Anomalous diffusion in asymmetric random walks with a quasi-geostrophic flow example,” Physica D, vol. 97, pp. 291–310, 1996.
  4.  T. Solomon, E. Weeks, and H. Swinney, “Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow,” Phys. Rev. Lett., vol. 71, pp. 3975–3979, 1993.
  5.  N.E. Humphries, et al., “Environmental context explains Lévy and Brownian movement patterns of marine predators,” Nature, vol. 465, pp. 1066–1069, 2010.
  6.  U. Siedlecka, “Heat conduction in a finite medium using the fractional single-phase-lag model,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, pp. 402–407, 2019.
  7.  R. Metzler and J. Klafter, “The random walk:s guide to anomalous diffusion: a fractional dynamics approach,” Phys. Rep., vol. 339, pp. 1–77, 2000.
  8.  R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,” J. Phys. A: Math. Gen., vol. 37, pp. 161–208, 2004.
  9.  M. Aslefallah, S. Abbasbandy, and E. Shivanian, “Numerical solution of a modified anomalous diffusion equation with nonlinear source term through meshless singular boundary method,” Eng. Anal. Boundary Elem., vol. 107, pp. 198–207, 2019.
  10.  Y. Li and D. Wang, “Improved efficient difference method for the modified anomalous sub-diffusion equation with a nonlinear source term,” Int. J. Comput. Math., vol. 94, pp. 821–840, 2017.
  11.  X. Cao, X. Cao, and L. Wen, “The implicit midpoint method for the modified anomalous sub-diffusion equation with a nonlinear source term,” J. Comput. Appl. Math., vol. 318, pp. 199–210, 2017.
  12.  A. Kilbas, H. Srivastava, and J. Trujillo, Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006.
  13.  E.D. Rainville, Special Functions. New York: The Macmillan Company, 1960.
  14.  J.-L. Liu and H.MSrivastava, “Classes of meromorphically multivalent functions associated with the generalized hypergeometric function,” Math. Comput. Modell., vol. 39, pp. 21–34, 2004.
  15.  Y.L. Luke, “Inequalities for generalized hypergeometric functions,” J. Approximation Theory, vol. 5, pp. 41–65, 1972.
  16.  M. Włodarczyk and A. Zawadzki, “The application of hypergeometric functions to computing fractional order derivatives of sinusoidal functions,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, pp. 243–248, 2016.
  17.  M. Błasik, “A generalized Crank-Nicolson method for the solution of the subdiffusion equation,” 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), pp.  726–729, 2018.
  18.  M. Błasik, “Zagadnienie stefana niecałkowitego rzędu,” Ph.D. dissertation, Politechnika Częstochowska, 2013.
  19.  M. Błasik and M. Klimek, “Numerical solution of the one phase 1d fractional stefan problem using the front fixing method,” Math. Methods Appl. Sci., vol. 38, no. 15, pp. 3214–3228, 2015.
  20.  K. Diethelm, The Analysis of Fractional Differential Equations. Berlin: Springer-Verlag, 2010.
Go to article

Authors and Affiliations

Marek Błasik
1

  1. Institute of Mathematics, Czestochowa University of Technology, al. Armii Krajowej 21, 42-201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

We introduce the Sobolev-type multi-term μ-fractional evolution with generalized fractional orders with respect to another function. We make some applications of the generalized Laplace transform. In the sequel, we propose a novel type of Mittag-Leffler function generated by noncommutative linear bounded operators with respect to the given function and give a few of its properties. We look for the mild solution formula of the Sobolev-type evolution equation by building on the aforementioned Mittag-Leffler-type function with the aid of two different approaches. We share new special cases of the obtained findings.
Go to article

Authors and Affiliations

Mustafa Aydin
1
ORCID: ORCID
Nazim Mahmudov
2 3
ORCID: ORCID

  1. Department of Medical Services and Techniques, Muradiye Vocational School, Van Yuzuncu Yil University, Tu¸sba 65080 Van, Turkey
  2. Department of Mathematics, Eastern Mediterranean University, Famagusta 99628 T.R. North Cyprus, Turkey
  3. Research Center of Econophysics, Azerbaijan State University of Economics (UNEC), Istiqlaliyyat Str. 6, Baku 1001, Azerbaijan
Download PDF Download RIS Download Bibtex

Abstract

In the paper finite-dimensional semilinear dynamical control systems described by fractional-order state equations with the Hilfer fractional derivative are discussed. The formula for a solution of the considered systems is presented and derived using the Laplace transform. Bounded nonlinear function �� depending on a state and controls is used. New sufficient conditions for controllability without constraints are formulated and proved using Rothe’s fixed point theorem and the generalized Darbo fixed point theorem. Moreover, the stability property is used to formulate constrained controllability criteria. An illustrative example is presented to give the reader an idea of the theoretical results obtained. A transient process in an electrical circuit described by a system of Hilfer type fractional differential equations is proposed as a possible application of the study.
Go to article

Authors and Affiliations

Beata Sikora
1
ORCID: ORCID

  1. Department of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper is a newapproach to the Duhamel integral. It contains an overviewof formulas and applications of Duhamel’s integral as well as a number of new results on the Duhamel integral and principle. Basic definitions are recalled and formulas for Duhamel’s integral are derived via Laplace transformation and Leibniz integral rule. Applications of Duhamel’s integral for solving certain types of differential and integral equations are presented. Moreover, an interpretation of Duhamel’s formula in the theory of operator semigroups is given. Some applications of Duhamel’s formula in control systems analysis are discussed. The work is also devoted to the usage of Duhamel’s integral for differential equations with fractional order derivative.
Go to article

Bibliography

[1] S. Abbas, M. Benchohra and G.M. N’Guerekata: Topics in Fractional Differential Equations. Springer, New York, 2012.
[2] R. Almeida, R. Kamocki, A.B. Malinowska and T. Odzijewicz: On the existence of optimal consensus control for the fractional Cucker– Smale model. Archives of Control Sciences, 30(4), (2020), 625–651, DOI: 10.24425/acs.2020.135844.
[3] J.J. Benedetto and W. Czaja: Integration and Modern Analysis. Brikhäuser, Boston, 2009.
[4] N. Bourbaki: Fonctions d’une Variable Réele. Hermann, Paris, 1976.
[5] M. Buslowicz: Robust stability of a class of uncertain fractional order linear systems with pure delay. Archives of Control Sciences, 25(2), (2015), 177–187.
[6] A.I. Daniliu: Impulse Series Method in the Dynamic Analysis of Structures. In: Proceedings of the Eleventh World Conference on Earthquake Engineering, paper no 577, (1996).
[7] S. Das: Functional Fractional Calculus. Second edition, Springer, Berlin, 2011.
[8] L. Debnath and D. Bhatta: Integral Transforms and their Applications. Third edition, CRC Press – Taylor & Francis Group, Boca Raton, 2015.
[9] V.A. Ditkin and A.P. Prudnikov: Integral Transforms and Operational Calculus. Pergamon Press, Oxford, 1965.
[10] G. Doetsch: Handbuch der Laplace-Transformation. Band I, Brikhäuser, Basel, 1950.
[11] D.T. Duc and N.D.V. Nhan: Norm inequalities for new convolutions and their applications. Applicable Analysis and Discrete Mathematics, 9(1), (2015), 168–179, DOI: 10.2298/AADM150109001D.
[12] K.J. Engel and R. Nagel: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York, 2000.
[13] K.J. Engel and R. Nagel: A Short Course on Operator Semigroups. Springer, New York, 2006.
[14] T.M. Flett: Differential analysis. Cambridge University Press, Cambridge, 2008.
[15] J.F. Gomez-Aguilar, H. Yepez-Martinez, C. Calderon-Ramon, I. Cruz- Orduna, R.F. Escobar-Jimenez and V.H. Olivares-Peregrino: Modeling of mass-spring-damper system by fractional derivatives with and without a singular kernel. Entropy, 17(9), (2015), 5340–5343, DOI: 10.3390/e17096289.
[16] M.I. Gomoyunov: Optimal control problems with a fixed terminal time in linear fractional-order systems. Archives of Control Sciences, 30(4), (2020), 721–744, DOI: 10.24425/acs.2020.135849.
[17] R. Gorenflo and F. Mainardi: Fractional calculus: Integral and differential equations of fractional order. In: A. Carpinteri and F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien, 1997.
[18] R. Grzymkowski and R. Witula: Complex functions and Laplace transform in examples and problems. Pracownia Komputerowa Jacka Skalmierskiego, Gliwice, 2010, (in Polish).
[19] V.A. Ilin, V.A. Sadovniczij and B.H. Sendov: Mathematical Analysis, Initial Course. Moscow University Press, Moscow, 1985, (in Russian).
[20] V.A. Ilin, V.A. Sadovniczij and B.H. Sendov: Mathematical Analysis, Continuation Course. Moscow University Press, Moscow, 1987, (in Russian).
[21] T. Kaczorek: Realization problem for fractional continuous-time systems. Archives of Control Sciences, 18(1), (2008), 43–58.
[22] T. Kaczorek: A new method for computation of positive realizations of fractional linear continuous-time systems. Archives of Control Sciences, 28(4), (2018), 511–525, DOI: 10.24425/acs.2018.125481.
[23] K.S. Kazakov: Dynamic response of a single degree of freedom (SDOF) system in some special load cases, based on the Duhamel integral. In: Proceedings of the EngOpt 2008: International Conference on Engineering Optimization, Rio de Janeiro, Brazil, 2008.
[24] N.S. Khabeev: Duhamel integral form for the interface heat flux between bubble and liquid. International Journal of Heat andMass Transfer, 50(25), (2007), 5340–5343, DOI: 10.1016/j.ijheatmasstransfer.2007.06.012.
[25] J. Klamka and B. Sikora:Newcontrollability criteria for fractional systems with varying delays. Theory and applications of non-integer order systems in Lecture Notes in Electrical Engineering, 407, (2017), 333–344.
[26] M. Klimek: On Solutions of Linear Fractional Differential Equations of a Variational Type. Wydawnictwo Politechniki Częstochowskiej, Częstochowa, 2009.
[27] M.I. Kontorowicz: The Operator Calculus and Processes in Electrical Systems. Wydawnictwo Naukowo-Techniczne, Warsaw, 1968, (in Polish).
[28] M.I. Krasnov , A.I. Kiselev and G.I. Makarenko: Functions of a Complex Variable, Operational Calculus, and Stability Theory, Problems and Exercises. Mir Publishers, Moscow, 1984.
[29] L.D. Kudryavtsev: Course of Mathematical Analysis. Volume 2, Higher School Press, Moscow, 1988, (in Russian).
[30] M.A. Lavrentev and B.V. Shabat: Methods of the Theory of Functions of a Complex Variable. Nauka, Moscow, 1973, (in Russian).
[31] Sz. Lubecki: Duhamel’s theorem for time-dependent thermal boundary conditions. In: R.B Hetnarski (Ed.), Encyclopedia of Thermal Stresses, Springer Netherlands, New Delhi, 2014.
[32] E. Łobos and B. Sikora: Advanced Calculus – Selected Topics. Silesian University of Technology Press, Gliwice, 2009.
[33] Z. Łuszczki: Application of general Bernstein polynomials to proving some theorem on partial derivatives. Prace Matematyczne, 2(2), (1958), 355–360, (in Polish).
[34] J. Mikusinski: On continuous partial derivatives of function of several variables. Prace Matematyczne, 7(1), (1962), 55–58, (in Polish).
[35] S. Mischler: An introduction to evolution PDEs, Chapter 3 – Evolution Equation and semigroups, Dauphine Université Paris, published online: www.ceremade.dauphine.fr/~mischler/Enseignements/M2evol1516/chap3.pdf.
[36] N.Nguyen Du Vi, D. Dinh Thanh and T. Vu Kim:Weighted norminequalities for derivatives and their applications. Kodai Mathematical Journal, 36(2), (2013), 228–245.
[37] J. Osiowski: An Outline of the Operator Calculus.Wydawnictwo Naukowo- Techniczne, Warsaw, 1981, (in Polish).
[38] G. Petiau: Theory of Bessel’s Functions. Centre National de la Recherche Scientifique, Paris, 1955, (in French).
[39] K. Rogowski: Reachability of standard and fractional continuous-time systems with constant inputs. Archives of Control Sciences, 26(2), (2016), 147–159, DOI: 10.1515/acsc-2016-0008.
[40] F.A. Shelkovnikov and K.G. Takaishvili: Collection of Problems on Operational Calculus. Higher School Press, Moscow, 1976, (in Russian).
[41] B. Sikora: Controllability of time-delay fractional systems with and without constraints. IET Control Theory & Applications, 10(3), (2019), 320–327.
[42] B. Sikora: Controllability criteria for time-delay fractional systems with retarded state. International Journal of Applied Mathematics and Computer Science, 26(6), (2019), 521–531.
[43] B. Sikora and J. Klamka: Constrained controllability of fractional linear systems with delays in control. Systems & Control Letters, 106, (2017), 9–15.
[44] B. Sikora and J. Klamka: Constrained controllability of fractional linear systems with delays in control. Kybernetika, 53(2), (2017), 370–381.
[45] B. Sikora: On application of Rothe’s fixed point theorem to study the controllability of fractional semilinear systems with delays. Kybernetika, 55(4), (2019), 675–698.
[46] B. Sikora and N. Matlok: On controllability of fractional positive continuous-time linear systems with delay. Archives of Control Sciences, 31(1), (2021), 29–51, DOI: 10.24425/acs.2021.136879.
[47] J. Tokarzewski: Zeros and the output-zeroing problem in linear fractionalorder systems. Archives of Control Sciences, 18(4), (2008), 437–451.
[48] S. Umarov: On fractional Duhamel’s principle and its applications. Journal of Differential Equations, 252(10), (2012), 5217–5234.
[49] S. Umarov and E. Saydamatov: A fractional analog of the Duhamel principle. Fractional Calculus & Applied Analysis, 9(1), (2006), 57–70.
[50] S. Umarov and E. Saydamatov: A generalization of Duhamel’s principle for differential equations of fractional order. Doklady Mathematics, 75(1), (2007), 94–96.
[51] C. Villani: Birth of a Theorem, Grasset & Fasquelle, 2012, (in French).
Go to article

Authors and Affiliations

Michał Różański
1
Beata Sikora
1
ORCID: ORCID
Adrian Smuda
1
Roman Wituła
1

  1. Department of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more