Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The as-cast microstructure of ductile cast iron (DI) was investigated using light microscopy (LM) and SEM techniques. Further the influence of hot plastic extrusion at 1000°C with plastic strain in the range of 20-60-80% on the transformation of the as-cast microstructure and on the mechanical properties was studied. Besides this, the microstructure of DI subjected to hot extrusion after the fracture of the corresponding samples induced by compression tests was thoroughly investigated. It was found that compression had a dramatic influence on a shear deformation and hence shear fracture of the compressed samples. It was shown that the shear fracture of the hot deformed ductile iron is accompanied by the occurrence of a narrow zone of severe plastic deformation. The fracture surfaces of the extruded samples subjected to the tensile tests and the compression tests were examined.
Go to article

Authors and Affiliations

A.S. Chaus
1
ORCID: ORCID
Ľ. Čaplovič
1
ORCID: ORCID
A.I. Pokrovskii
2
ORCID: ORCID
R. Sobota
1
ORCID: ORCID

  1. Slovak University of Technology, Faculty of Materials Science and Technology, J. Bottu 25, Trnava, 917 24 Slovakia
  2. National Academy of Sciences of Belarus, Physical Technical Institute, 10. Kuprevicha Str., Minsk, 220141 Belarus
Download PDF Download RIS Download Bibtex

Abstract

Since fatigue cracks nucleate and initiate generally at the surface of the rotary components such as blades and discs, the surface condition is the most important factor affecting the fatigue life. Surface scratches are suitable sites for stress concentrations and therefore the nucleation stage of fatigue cracks will be shortened. In the present work, the influence of surface roughness on the low cycle fatigue life behavior of nickel-based superalloy Rene®80 at the temperature of 900°C was evaluated. Results of low cycle fatigue tests (LCF) under strain-controlled condition at 900°C for R = εmin/εmax = 0 and strain rate of 2×10 –3 s –1, at a total strain range of 1.2% showed an inverse relationship between fatigue strength and surface roughness of the specimens. In this study, increasing the surface roughness of Rene®80 from 0.2 μm to 5.4 μm led to the decline in the final LCF life from 127 cycles to 53 cycles which indicated a 58.3% reduction in fatigue life at the same condition. Fractography evaluation also exhibited that fatigue cracks initiated from the notch in the rough specimens, whereas in the smooth specimen fatigue cracks nucleated from the internal imperfections and carbides.
Go to article

Authors and Affiliations

Mohammad Mehdi Barjesteh
1
ORCID: ORCID

  1. Malek Ashtar University of Technology (MUT), Faculty of Material and Manufacturing Technologies, Tehran 15875-1774, Iran
Download PDF Download RIS Download Bibtex

Abstract

In this work, experiments were carried out to quantify the behaviour of friction stir welded (FSW) AA5082-AA7075 butt joints under tensile loading and completely reversed fatigue loading. Different samples were prepared to identify optimum tool rotational and travel speeds to produce FSW AA5082-AA7075 butt joints with the maximum fatigue life. ANOVA was performed, which confirmed that both tool speed and tool rotational speed affect the tensile strength of the weld. The samples exhibit a considerable difference in their fatigue life and tensile strength. This difference can be accounted to the presence of welding defects such as surface defects and porosity. S-N curve plotted for the sample shows a significantly high fatigue life at the lower stress ranges. Fracture surfaces were also analysed under scanning electron microscope (SEM). Study of the fracture surface of the sample that failed under fatigue loading showed that the surface was mainly divided in two zones. The first zone was the area of fatigue crack growth where each stress cycle, slowly and gradually, helped in the growth of the crack. The second zone was the region of fast fracture where the crack growth resulted in the failure of the joint instantaneously. The fracture surface study of the sample that failed under tensile loading showed that the mode of failure was ductile in nature.

Go to article

Authors and Affiliations

Gaurav Kumar
Rajeev Kumar
Ratnesh Kumar
Download PDF Download RIS Download Bibtex

Abstract

The article will be focused on analysis of properties of aluminum alloy for the casting of type Al-Mg. As an experimental material was used aluminum alloy EN AC 51200, supplied in a cast state without a heat treatment. It was produced by the continuous casting method. Experiments deal with microstructural material analysis, fractographic analysis, mechanical and fatigue tests. The microstructure of the testing sample was examined using an optical microscope Neophot 32. Fatigue properties of aluminum alloy was tested by three-point bending cyclic loading. The fracture surface of the testing sample was examined using scanning electron microscopy (SEM), where sample was observed on various stages of the fatigue process, its characteristics and differences of fracture surfaces.

Go to article

Authors and Affiliations

M. Uhríčik
ORCID: ORCID
P. Palček
M. Chalupová
ORCID: ORCID
P. Hanusová
L. Kuchariková
ORCID: ORCID

This page uses 'cookies'. Learn more