Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Current methods of fault diagnosis for the grounding grid using DC or AC are limited in accuracy and cannot be used to identify the locations of the faults. In this study, a new method of fault diagnosis for substation grounding grids is proposed using a square-wave. A frequency model of the grounding system is constructed by analyzing the frequency characteristics of the soil and the grounding conductors into which two different frequency square-wave sources are injected. By analyzing and comparing the corresponding information of the surface potentials of the output signals, the faults of the grounding grid can be diagnosed and located. Our method is verified by software simulation, scale model experiments and field experiments.

Go to article

Authors and Affiliations

Peng-He Zhang
Jun-Jia He
Dan-Dan Zhang
Lan-Min Wu
Download PDF Download RIS Download Bibtex

Abstract

The measurement of frequency characteristics, like magnitude and phase, related to a specific transfer function of DC–DC converters, can be a difficult task – especially when the measured signal approaches the boundary of a small-signal model validity (i:e. 1/3 of the switching frequency fS). It is hard to find a paper where authors mention the measurement techniques they use to draw frequency characteristics. Meanwhile the presence of noise in the output signal does not enable to directly measure the gain and the phase shift between the input and output signals. In such situations additional analysis is required in order to achieve a reliable result. This paper contains a description of a few methods that can be used to analyse measured signals in order to determine the gain and the phase shift of a specific transfer function. They enable to verify mathematical models in a wide range of frequencies (up to 1/3 fS). The methods use signals measured in the time domain and can be implemented in mathematical software such as Matlab or Scilab.

Go to article

Authors and Affiliations

Marcin Walczak

This page uses 'cookies'. Learn more