Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The possibility of a normal distribution indicates that few particles are in the same phase during a breath and their reflections can be observed on the chest wall, then a few explosive waves with relatively large power occurr occasionally. Therefore, the one-cycle sine wave which is simulated as a single burst of the explosive effect phenomenon penetrates through the chest wall and was analysed to explore the reason of the crackle sounds. The results explain the differences between the definitions of crackle proposed by Sovijärvi et al. (2000a). The crackles in the lungs were synthesised by a computer simulation. When the coarse crackles occur, the results indicate that higher burst frequency carriers (greater than 100 Hz) directly penetrate the bandpass filter to simulate the chest wall. The simulated coarse crackle sounds were low pitched, with a high amplitude and long duration. The total duration was greater than 10 ms. However, for a lower frequency carrier (approximately 50 Hz), the fundamental frequency component was filtered out. Therefore, the second harmonic component of the lower frequency carrier, i.e., the fine crackle, penetrated the chest wall. Consequently, it is very possible that the normal lung sounds may contain many crackle-shaped waves with very small amplitudes because of the filtering effects of the chest wall, environment noises, electric devices, stethoscopes, and human ears, the small crackles disappear in the auscultations. In addition, our study pointed out that some unknown crackles of the very low frequency under the bandwidth of the human ears cannot penetrate the airways and be detected by medical doctors. Therefore, it might be necessary to focus advanced electronic instrumentation on them in order to analyse their possible characteristics for diagnosis and treatment of the respiration system.
Go to article

Authors and Affiliations

Bing-Yuh Lu
1 2
Meng-Lun Hsueh
3
Huey-Dong Wu
4

  1. Faculty of Automation, Guangdong University of Petrochemical Technology, No. 139, Sec. 2, Guando Road, Maoming City, Guangdong 525000, China
  2. Department of Electronic Engineering, Tungnan University, No. 152, Sec. 3., BeiShen Rd., ShenKeng Dist., New Taipei City 22202, Taiwan (R.O.C.)
  3. Department of Electronic Engineering, Hwa Hsia University of Technology, No. 111, Gongzhuan Rd., Zhonghe Dist., New Taipei City 235, Taiwan (R.O.C.)
  4. Section of Respiration Therapy, Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist., Taipei City 100, Taiwan (R.O.C.)
Download PDF Download RIS Download Bibtex

Abstract

The secretiveness of sonar operation can be achieved by using continuous frequency-modulated sounding signals with reduced power and significantly prolonged repeat time. The application of matched filtration in the sonar receiver provides optimal conditions for detection against the background of white noise and reverberation, and a very good resolution of distance measurements of motionless targets. The article shows that target movement causes large range measurement errors when linear and hyperbolic frequency modulations are used. The formulas for the calculation of these errors are given. It is shown that for signals with linear frequency modulation the range resolution and detection conditions deteriorate. The use of hyperbolic frequency modulation largely eliminates these adverse effects.

Go to article

Authors and Affiliations

Jacek Marszal
Roman Salamon
Download PDF Download RIS Download Bibtex

Abstract

Different from the synchronization mechanism of synchronous generators, the non-synchronous generators must be synchronized with the grid through a controller. Generally, the virtual synchronous generator (VSG) control strategy is adopted for this purpose. In view of the current situation, where the control loops are not comprehensively considered in the research of the synchronization stability of the VSG, this paper considers multiple control loops, such as active frequency loops, virtual governors, power filters and current constraint control, to establish the mathematical model of the VSG and infinite system. On this basis, the correlation formula between power angle difference and control parameters is deduced. Adopting the phase plane method, the influence of different control loops and their parameters on the transient synchronization stability is analyzed. Finally, a setting principle of the frequency modulation coefficient of virtual governors is proposed, which not only meets the response speed of control systems, but also has good control performance.
Go to article

Authors and Affiliations

Yanxia Zhang
1
Yachao Cheng
1
Kaixiang Liu
Yue Han
1

  1. School of Electrical and Information Engineering, Tianjin University, China
Download PDF Download RIS Download Bibtex

Abstract

The LLC resonant converter is a widely used DC/DC converter that offers the benefit of enabling soft switching compared to classical DC/DC converters. However, traditional PI control strategy based on a linear model has drawbacks such as slow dynamic response and poor anti-interference performance. To overcome the shortage, a passivitybased control strategy based on the Euler–Lagrange (EL) model is proposed in this paper to improve the dynamic performance of the half-bridge LLC resonant converter. In addition, the stability of the system based on the proposed strategy is analyzed and verified. Further, the effectiveness and performance of the proposed strategy is verified in the simulation by comparing with the traditional PI controller. Finally, a prototype was built to verify the dynamic performance of the LLC resonant converter based on the proposed control strategy.
Go to article

Authors and Affiliations

Yajing Zhang
1
Weihao Liang
1
Xiuteng Wang
2
Lifen Li
3

  1. School of Automation, Beijing Information Science & Technology University No. 12 Qinghe Xiaoying East Road, Haidian District, Beijing, China
  2. Branch of Resource and Environment, China National Institute of Standardization No. 4 Zhi Chun Road, Haidian District, Beijing, China
  3. School of Information Science and Technology, Yanching Institute of Technology No. 808 Yingbin Road, National High-tech Industrial Development Zone Dongyanjiao, Beijing, Hebei, China

This page uses 'cookies'. Learn more