Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The problem of the optimal driving technique during the fuel economy competition is reconsidered. The vehicle is regarded as a particle moving on a trace with a variable slope angle. The fuel consumption is minimized as the vehicle covers the given distance in a given time. It is assumed that the run consists of two recurrent phases: acceleration with a full available engine power and coasting down with the engine turned off. The most fuel-efficient technique for shifting gears during acceleration is found. The decision variables are: the vehicle velocities at which the gears should be shifted, on the one hand, and the vehicle velocities when the engine should be turned on and off, on the other hand. For the data of students’ vehicle representing the Faculty of Power and Aeronautical Engineering it has been found that such driving strategy is more effective in comparison with a constant speed strategy with the engine partly throttled, as well as a strategy resulting from optimal control theory when the engine is still active.

Go to article

Authors and Affiliations

Paweł Sulikowski
Ryszard Maroński
Download PDF Download RIS Download Bibtex

Abstract

The problem of optimal driving techniques during fuel economy competition is considered. The kinetic model of the record wheeled vehicle is proposed. It is regarded as a particle moving on a trace with variable slope angle. Engine characteristics are taken into account. The fuel consumption is minimized as the vehicle goes over a given distance. The problem is formulated in optimal control. The direct pseudospectral Chebyshev’s method is employed. The motion of student’s vehicle representing the Faculty of Power and Aeronautical Engineering during Shell Eco-marathon in Nogaro, France, in 2006, is used as an example.

Go to article

Authors and Affiliations

Krzysztof Rogowski
Ryszard Maroński

This page uses 'cookies'. Learn more