Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 36
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the present work, an experimental investigation of a transverse fatigue crack has been carried out. A mathematical modelling of cracked rotor system along with the measured vibration is used to find crack parameters that not only detect the fault but also quantify it. Many experimental studies on cracks considered the crack as a slit or notch, which remains open. However, such flaws do not mimic a fatigue crack behavior, in which crack front opens and closes (i.e., breathes in a single revolution of the rotor). The fatigue crack in rotors commonly depicts 2x frequency component in the response, as well as higher frequency components, such as 3x, 4x and so on. In rotors, both forward and backward whirling take place due to asymmetry in rotor, and thus the fatigue crack gives the forward and backward whirl for all such harmonics. A rotor test rig was developed with a fatigue crack in it; rotor motions in two orthogonal directions were captured from the rig at discrete rotor angular speeds using proximity probes. The directional-spectrum processing technique has been utilized to the measured displacements to get its forward and backward whirl components. Subsequently, it is executed in a mathematical model-based estimation procedure to obtain the crack forces, residual unbalances, and remaining rotor system unknown variables. Estimation of crack forces during rotation of the shaft gives its characteristics, which can be used further to develop newer crack models.

Go to article

Bibliography

[1] Y. Ishida. Cracked rotors: Industrial machine case histories and nonlinear effects shown by a simple Jeffcott rotor. Mechanical Systems and Signal Processing, 22(4):805–817, 2008. doi: 10.1016/j.ymssp.2007.11.005.
[2] G. Sabnavis, R.G. Kirk, M. Kasarda, and D. Quinn. Cracked shaft detection and diagnostics: a literature review. The Shock and Vibration Digest, 36(4):287–296, 2004. doi: 10.1177/0583102404045439.
[3] N. Dharmaraju, R.Tiwari, and S. Talukdar. Identification of an open crack model in a beam based on force-response measurements. Computers & Structures, 82(2-3):167–179, 2003. doi: 10.1016/j.compstruc.2003.10.006.
[4] A.S. Sekhar. Crack identification in a rotor system: a model-based approach. Journal of Sound and Vibration, 270(4-5):887–902, 2004. doi: 10.1016/S0022-460X(03)00637-0.
[5] A.C. Chaselevris and C.A. Papodopoulos. Experimental detection of an early developed crack in rotor-bearing system using an AMB. Third International Conference of Engineering against Failure, June 26–28, 2013, Kos, Greece.
[6] P. Gudmundson. The dynamic behaviour of slender structures with cross-sectional cracks. Journal of the Mechanics and Physics of Solids, 31(4):329–345, 1983. doi: 10.1016/0022-5096(83)90003-0.
[7] C.A. Papadopoulos and A.D. Dimarogonas. Stability of the cracked rotors in the coupled vibration mode. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 110(3):356–359, 1988.
[8] A.K. Darpe, K. Gupta, and A. Chawla. Experimental investigations of the response of a cracked rotor to periodic axial excitation. Journal of Sound and Vibration, 260(2):265–286, 2003. doi: 10.1016/S0022-460X(02)00944-6.
[9] T. Zhou, Z. Sun, J. Xu, andW. Han. Experimental analysis of cracked rotor. Journal of Dynamic systems, Measurement, and Control, 127(3):313–320, 2005. doi: 10.1115/1.1978908.
[10] P. Pennacchi, N. Bachschmid, and A. Vania. A model-based identification method of transverse cracks in rotating shafts suitable for industrial machines. Mechanical Systems and Signal Processing, 20(8):2112–2147, 2006. doi: .
[11] J.K. Sinha. Higher order spectra for crack and misalignment identification in the shaft of a rotating machine. Structural Health Monitoring, 6(4):325–334, 2007. doi: 10.1177/1475921707082309.
[12] Z. Cai. Vibration diagnostics of elastic shafts with a transverse crack. Master Thesis, Faculty of Computing, Health and Science, Edith Cowan University, Perth, Australia 2011.
[13] S.K. Singh and R. Tiwari. Detection and localization of multiple cracks in a shaft system: An experimental investigation. Measurement, 53:182–193, 2014. doi: 10.1016/j.measurement.2014.03.028.
[14] D. Southwick. Using full spectrum plots: Part 2. Orbit, 15(2):10–16. 1994.
[15] P. Goldman and A. Muszynska. Application of full spectrum to rotating machinery diagnostics. Orbit, 17–21, 1999.
[16] J. Tuma, and J. Bilos. Fluid induced instability of rotor systems with journal bearings. Engineering Mechanics, 14(1-2):69–80, 2007.
[17] T.H. Patel and A.K. Darpe. Application of full spectrum analysis for rotor fault diagnosis. In: IUTAM Symposium on Emerging Trends in Rotor Dynamics, 1011:535–545, 2011.
[18] C. Shravankumar and R. Tiwari. Detection of fatigue crack in a rotor system using full-spectrum based estimation. Sadhana, 41(2):239–251, 2016. doi: 10.1007/s12046-015-0452-9.
[19] C. Shravankumar and R. Tiwari. Model-based crack identification using full-spectrum. In Proceedings of the ASME 2013 Gas Turbine India Conference, Bangalore, Karnataka, India, December 5–6, 2013. doi: 10.1115/GTINDIA2013-3756.
[20] C. Shravankumar and R. Tiwari. Identification of stiffness and periodic breathing forces of a transverse switching crack in a Laval rotor. Fatigue and Fracture of Engineering Materials and Structures, 36(3):254–269, 2012. doi: 10.1111/j.1460-2695.2012.01718.x.
[21] C. Shravankumar, R. Tiwari, and A. Mahibalan. Experimental identification of rotor crack forces. In: Proceedings of the 9th IFToMM International Conference on Rotor Dynamics: pp. 361–371, 2015. doi: 10.1007/978-3-319-06590-8_28.
[22] X.B. Rao, Y.D. Chu, Y.X. Chang, J.G. Zhang, and Y.P. Tian. Dynamics of a cracked rotor system with oil-film force in parameter space. Nonlinear Dynamics, 88(4):2347–2357, 2017. doi: 10.1007/s11071-017-3381-9.
[23] B.C. Wen and Y.B.Wang. Theoretical research, calculation and experiments of cracked shaft dynamical responses. In Proceedings of International Conference on Vibration in Rotating Machinery, pp. 473–478, London, UK, 1988.
[24] Prashant Kumar. Elements of Fracture Mechanics. Wheeler Publishing, New Delhi, 1999.
[25] M.G. Maalouf. Slow-speed: vibration signal analysis. Orbit, 27(2):4–16, 2007.
[26] R. Tiwari. Rotor Systems: Analysis and Identification. CRC Press, USA, 2017. doi: 10.1201/9781315230962.
[27] L.G.G. Villani, S. da Siva, and A. Cunha Jr. Damage detection in uncertain nonlinear systems based on stochastic Volterra series. Mechanical Systems and Signal Processing, 125:288–310, 2019. doi: 10.1016/j.ymssp.2018.07.028.
Go to article

Authors and Affiliations

C. Shravankumar
1
Rajiv Tiwari
1

  1. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781039, India.
Download PDF Download RIS Download Bibtex

Abstract

In the present work, a procedure for the estimation of internal damping in a cracked rotor system is described. The internal (or rotating) damping is one of the important rotor system parameters and it contributes to the instability of the system above its critical speed. A rotor with a crack during fatigue loading has rubbing action between the two crack faces, which contributes to the internal damping. Hence, internal damping estimation also can be an indicator of the presence of a crack. A cracked rotor system with an offset disc, which incorporates the rotary and translatory of inertia and gyroscopic effect of the disc is considered. The transverse crack is modeled based on the switching crack assumption, which gives multiple harmonics excitation to the rotor system. Moreover, due to the crack asymmetry, the multiple harmonic excitations leads to the forward and backward whirls in the rotor orbit. Based on equations of motions derived in the frequency domain (full spectrum), an estimation procedure is evolved to identify the internal and external damping, the additive crack stiffness and unbalance in the rotor system. Numerically, the identification procedure is tested using noisy responses and bias errors in system parameters.

Go to article

Bibliography

[1] R. Tiwari. Rotor Systems: Analysis and Identification. CRC Press, Boca Raton, FL, USA, 2017.
[2] F. Ehrich. Shaft whirl induced by rotor internal damping. Journal of Applied Mechanics, 31(2):279–282, 1964. doi: 10.1115/1.3629598.
[3] J. Shaw and S. Shaw. Instabilities and bifurcations in a rotating shaft. Journal of Sound and Vibration, 132(2):227–244, 1989. doi: 10.1016/0022-460X(89)90594-4.
[4] W. Kurnik. Stability and bifurcation analysis of a nonlinear transversally loaded rotating shaft. Nonlinear Dynamics, 5(1):39–52, 1994.
[5] L.-W. Chen and D.-M. Ku. Analysis of whirl speeds of rotor-bearing systems with internal damping by C 0 finite elements. Finite Elements in Analysis and Design, 9(2):169–176, 1991. doi: 10.1016/0168-874X(91)90059-8.
[6] D.-M. Ku. Finite element analysis of whirl speeds for rotor-bearing systems with internal damping. Mechanical Systems and Signal Processing, 12(5):599–610, 1998. doi: 10.1006/mssp.1998.0159.
[7] J. Melanson and J. Zu. Free vibration and stability analysis of internally damped rotating shafts with general boundary conditions. Journal of Vibration and Acoustics, 120(3):776–783, 1998. doi: 10.1115/1.2893897.
[8] G. Genta. On a persistent misunderstanding of the role of hysteretic damping in rotordynamics. Journal of Vibration and Acoustics, 126(3):459–461, 2004. doi: 10.1115/1.1759694.
[9] M. Dimentberg. Vibration of a rotating shaft with randomly varying internal damping. Journal of Sound and Vibration, 285(3):759–765, 2005. doi: 10.1016/j.jsv.2004.11.025.
[10] F. Vatta and A. Vigliani. Internal damping in rotating shafts. Mechanism and Machine Theory, 43(11):1376–1384, 2008. doi: 10.1016/j.mechmachtheory.2007.12.009.
[11] J. Fischer and J. Strackeljan. Stability analysis of high speed lab centrifuges considering internal damping in rotor-shaft joints. Technische Mechanik, 26(2):131–147, 2006.
[12] O. Montagnier and C. Hochard. Dynamic instability of supercritical driveshafts mounted on dissipative supports – effects of viscous and hysteretic internal damping. Journal of Sound and Vibration, 305(3):378–400, 2007. doi: 10.1016/j.jsv.2007.03.061.
[13] M. Chouksey, J.K. Dutt, and S.V. Modak. Modal analysis of rotor-shaft system under the influence of rotor-shaft material damping and fluid film forces. Mechanism and Machine Theory, 48:81–93, 2012. doi: 10.1016/j.mechmachtheory.2011.09.001.
[14] P. Goldman and A. Muszynska. Application of full spectrum to rotating machinery diagnostics. Orbit, 20(1):17–21, 1991.
[15] R. Tiwari. Conditioning of regression matrices for simultaneous estimation of the residual unbalance and bearing dynamic parameters. Mechanical Systems and Signal Processing, 19(5):1082–1095, 2005. doi: 10.1016/j.ymssp.2004.09.005.
[16] I. Mayes and W. Davies. Analysis of the response of a multi-rotor-bearing system containing a transverse crack in a rotor. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 106(1):139–145, 1984. doi: 10.1115/1.3269142.
[17] R. Gasch. Dynamic behaviour of the Laval rotor with a transverse crack. Mechanical Systems and Signal Processing, 22(4):790–804, 2008. doi: 10.1016/j.ymssp.2007.11.023.
[18] M. Karthikeyan,R. Tiwari, S. and Talukdar. Development of a technique to locate and quantify a crack in a beam based on modal parameters. Journal of Vibration and Acoustics, 129(3):390–395, 2007. doi: 10.1115/1.2424981.
[19] S.K. Singh and R. Tiwari. Identification of a multi-crack in a shaft system using transverse frequency response functions. Mechanism and Machine Theory, 45(12):1813–1827, 2010. doi: 10.1016/j.mechmachtheory.2010.08.007.
[20] C. Shravankumar and R. Tiwari. Identification of stiffness and periodic excitation forces of a transverse switching crack in a Laval rotor. Fatigue & Fracture of Engineering Materials & Structures, 36(3):254–269, 2013. doi: 10.1111/j.1460-2695.2012.01718.x.
[21] S. Singh and R. Tiwari. Model-based fatigue crack identification in rotors integrated with active magnetic bearings. Journal of Vibration and Control, 23(6):980–1000, 2017. doi: 10.1177/1077546315587146.
[22] S. Singh and R. Tiwari. Model-based switching-crack identification in a Jeffcott rotor with an offset disk integrated with an active magnetic bearing. Journal of Dynamic Systems, Measurement, and Control, 138(3):031006, 2016. doi: 10.1115/1.4032292.
[23] S. Singh and R. Tiwari. Model based identification of crack and bearing dynamic parameters in flexible rotor systems supported with an auxiliary active magnetic bearing. Mechanism and Machine Theory, 122: 292–307, 2018. doi: 10.1016/j.mechmachtheory.2018.01.006.
[24] C. Shravankumar. Crack Identific in Rotors with Full-Spectrum. Ph.D. Thesis, IIT Guwahati, India, 2014.
[25] A.D. Dimarogonas. Vibration of cracked structures: a state of the art review. Engineering Fracture Mechanics, 55(5): 831–857, 1996. doi: 10.1016/0013-7944(94)00175-8.
Go to article

Authors and Affiliations

Dipendra Kumar Roy
1
Rajiv Tiwari
2

  1. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
  2. Faculty of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
Download PDF Download RIS Download Bibtex

Abstract

In the rotor system, depending upon the ratio of rotating (internal) damping and stationary (external) damping, above the critical speed may develop instability regions. The crack adds to the rotating damping due to the rubbing action between two faces of a breathing crack. Therefore, there is a need to estimate the rotating damping and other system parameters based on experimental investigation. This paper deals with a physical model based an experimental identification of the rotating and stationary damping, unbalance, and crack additive stiffness in a cracked rotor system. The model of the breathing crack is considered as of a switching force function, which gives an excitation in multiple harmonics and leads to rotor whirls in the forward and backward directions. According to the rotor system model considered, equations of motion have been derived, and it is converted into the frequency domain for developing the estimation equation. To validate the methodology in an experimental setup, the measured time domain responses are converted into frequency domain and are utilized in the developed identification algorithm to estimate the rotor parameters. The identified parameters through the experimental data are used in the analytical rotor model to generate responses and to compare them with experimental responses.

Go to article

Bibliography

[1] R. Tiwari. Rotor Systems: Analysis and Identification. CRC Press, USA, 2017. doi: 10.1201/9781315230962.
[2] F. Ehrich. Shaft whirl induced by rotor internal damping. Journal of Applied Mechanics, 31(2):279–282, 1964. doi: 10.1115/1.3629598.
[3] L.-W. Chen and D.-M. Ku. Analysis of whirl speeds of rotor-bearing systems with internal damping by C 0 finite elements. Finite Elements in Analysis and Design, 9(2):169–176, 1991. doi: 10.1016/0168-874X(91)90059-8.
[4] D.-M. Ku. Finite element analysis of whirl speeds for rotor-bearing systems with internal damping. Mechanical Systems and Signal Processing, 12(5):599–610, 1998. doi: 10.1006/mssp.1998.0159.
[5] J. Melanson and J. Zu. Free vibration and stability analysis of internally damped rotating shafts with general boundary conditions. Journal of Vibration and Acoustics, 120(3):776–783, 1998. doi: 10.1115/1.2893897.
[6] G. Genta. On a persistent misunderstanding of the role of hysteretic damping in rotordynamics. Journal of Vibration and Acoustics, 126(3):459–461, 2004. doi: 10.1115/1.1759694.
[7] M. Dimentberg. Vibration of a rotating shaft with randomly varying internal damping. Journal of Sound and Vibration, 285(3):759–765, 2005. doi: 10.1016/j.jsv.2004.11.025.
[8] F. Vatta and A. Vigliani. Internal damping in rotating shafts. Mechanism and Machine Theory, 43(11):1376–1384, 2008. doi: 10.1016/j.mechmachtheory.2007.12.009.
[9] J. Fischer and J. Strackeljan. Stability analysis of high speed lab centrifuges considering internal damping in rotor-shaft joints. Technische Mechanik, 26(2):131–147, 2006.
[10] O. Montagnier and C. Hochard. Dynamic instability of supercritical driveshafts mounted on dissipative supports – effects of viscous and hysteretic internal damping. Journal of Sound and Vibration, 305(3):378–400, 2007. doi: 10.1016/j.jsv.2007.03.061.
[11] M. Chouksey, J.K. Dutt, and S.V. Modak. Modal analysis of rotor-shaft system under the influence of rotor-shaft material damping and fluid film forces. Mechanism and Machine Theory, 48:81–93, 2012. doi: 10.1016/j.mechmachtheory.2011.09.001.
[12] P. Goldman and A. Muszynska. Application of full spectrum to rotating machinery diagnostics. Orbit, 20(1):17–21, 1991.
[13] R. Tiwari. Conditioning of regression matrices for simultaneous estimation of the residual unbalance and bearing dynamic parameters. Mechanical Systems and Signal Processing, 19(5):1082–1095, 2005. doi: 10.1016/j.ymssp.2004.09.005.
[14] I. Mayes and W. Davies. Analysis of the response of a multi-rotor-bearing system containing a transverse crack in a rotor. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 106(1):139–145, 1984. doi: 10.1115/1.3269142.
[15] R. Gasch. Dynamic behaviour of the Laval rotor with a transverse crack. Mechanical Systems and Signal Processing, 22(4):790–804, 2008. doi: 10.1016/j.ymssp.2007.11.023.
[16] M. Karthikeyan, R. Tiwari, S. and Talukdar. Development of a technique to locate and quantify a crack in a beam based on modal parameters. Journal of Vibration and Acoustics, 129(3):390–395, 2007. doi: 10.1115/1.2424981.
[17] S.K. Singh and R. Tiwari. Identification of a multi-crack in a shaft system using transverse frequency response functions. Mechanism and Machine Theory, 45(12):1813–1827, 2010. doi: 10.1016/j.mechmachtheory.2010.08.007.
[18] C. Shravankumar and R. Tiwari. Identification of stiffness and periodic excitation forces of a transverse switching crack in a Laval rotor. Fatigue & Fracture of Engineering Materials & Structures, 36(3):254–269, 2013. doi: 10.1111/j.1460-2695.2012.01718.x.
[19] S. Singh and R. Tiwari. Model-based fatigue crack identification in rotors integrated with active magnetic bearings. Journal of Vibration and Control, 23(6):980–1000, 2017. doi: 10.1177/1077546315587146.
[20] S. Singh and R. Tiwari. Model-based switching-crack identification in a Jeffcott rotor with an offset disk integrated with an active magnetic bearing. Journal of Dynamic Systems, Measurement, and Control, 138(3):031006, 2016. doi: 10.1115/1.4032292.
[21] S. Singh and R. Tiwari. Model based identification of crack and bearing dynamic parameters in flexible rotor systems supported with an auxiliary active magnetic bearing. Mechanism and Machine Theory, 122: 292–307, 2018. doi: 10.1016/j.mechmachtheory.2018.01.006.
[22] D.K. Roy, and R. Tiwari. Development of identification procedure for the internal and external damping in a cracked rotor system undergoing forward and backward whirls. Archive of Mechanical Engineering, 66(2):229–255. doi: 10.24425/ame.2019.128446.
[23] M. G. Maalouf. Slow speed vibration signal analysis: if you can’t do it slow, you can’t do it fast. In Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, volume 5, pages 559–567. Montreal, Canada, 14–17 May, 2007. doi: 10.1115/GT2007-28252.
[24] C. Shravankumar, R. Tiwari, and A. Mahibalan. Experimental identification of rotor crack forces. In: Proceedings of the 9th IFToMM International Conference on Rotor Dynamics: pp. 361–371, 2015. doi: 10.1007/978-3-319-06590-8_28.
Go to article

Authors and Affiliations

Dipendra Kumar Roy
1
Rajiv Tiwari
1

  1. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781039, India.
Download PDF Download RIS Download Bibtex

Abstract

In this study, the modified Sauer cavitation model and Kirchhoff-Ffowcs Williams and Hawkings (K-FWH) acoustic model were adopted to numerically simulate the unsteady cavitation flow field and the noise of a threedimensional NACA66 hydrofoil at a constant cavitation number. The aim of the study is to conduct and analyze the noise performance of a hydrofoil and also determine the characteristics of the sound pressure spectrum, sound power spectrum, and noise changes at different monitoring points. The noise change, sound pressure spectrum, and power spectrum characteristics were estimated at different monitoring points, such as the suction side, pressure side, and tail of the hydrofoil. The noise characteristics and change law of the NACA66 hydrofoil under a constant cavitation number are presented. The results show that hydrofoil cavitation takes on a certain degree of pulsation and periodicity. Under the condition of a constant cavitation number, as the attack angle increases, the cavitation area of the hydrofoil becomes longer and thicker, and the initial position of cavitation moves forward. When the inflow velocity increases, the cavitation noise and the cavitation area change more drastically and have a superposition tendency toward the downstream. The novelty is that the study presents important calculations and analyses regarding the noise performance of a hydrofoil, characteristics of the sound pressure spectrum, and sound power spectrum and noise changes at different monitoring points. The article may be useful for specialists in the field of engineering and physics.
Go to article

Authors and Affiliations

He Xiaohui
1
Liu Zhongle
2
Yang Chao
1
Yuan Zhiyong
2

  1. Jiangnan Industry Group Co., Ltd., Wuyi Village, China
  2. Naval University of Engineering, Wuhan, China
Download PDF Download RIS Download Bibtex

Abstract

The objective of this paper is to estimate performance of a new approach for spectrum sharing and coordination between terrestrial base stations (BS) and On-board radio access nodes (UxNB) carried by Unmanned Aerial Vehicles (UAV). This approach employs an artificial intelligence (AI) based algorithm implemented in a centralized controller. According to the assessment based on the latest specifications of 3rd Generation Partnership Project (3GPP) the newly defined Unmanned Aerial System Traffic Management (UTM) is feasible to implement and utilize an algorithm for dynamic and efficient distribution of available radio resources between all radio nodes involved in process of optimization. An example of proprietary algorithm has been described, which is based on the principles of Kohonen neural networks. The algorithm has been used in simulation scenario to illustrate the performance of the novel approach of centralized radio channels allocation between terrestrial BSs and UxNBs deployed in 3GPP-defined rural macro (RMa) environment. Simulation results indicate that at least 85% of simulated downlink (DL) transmissions are gaining additional channel bandwidth if presented algorithm is used for spectrum distribution between terrestrial BSs and UxNBs instead of baseline soft frequency re-use (SFR) approach.
Go to article

Bibliography

[1] 3GPP, “UAS-UAV”, https://www.3gpp.org/uas-uav, accessed 18 November 2019.
[2] 3GPP TR 36.777, “Release 15. Enhanced LTE support for aerial vehicles”, January 2018.
[3] 3GPP TS 22.125, “Release 16. Unmanned Aerial System (UAS) support in 3GPP. Stage 1”, September 2019.
[4] 3GPP TS 22.125, “Release 17. Unmanned Aerial System (UAS) support in 3GPP. Stage 1”, December 2019.
[5] S. Zhang, Y. Zeng, R. Zhang, “Cellular-Enabled UAV Communication: A Connectivity-Constrained Trajectory Optimization Perspective”, IEEE Transactions on Communications, Vol. 67, No. 3, March 2019. DOI: 10.1109/TCOMM.2018.2880468.
[6] B. Li, Z. Fei, Y. Zhang, “UAV Communications for 5G and Beyond: Recent Advances and Future Trends”, IEEE Internet of Things Journal, Vol. 6, No. 2, April 2019. DOI: 10.1109/JIOT.2018.2887086.
[7] L. Sboui, H. Ghazzai, Z. Rezki, M.-S. Alouini, “Energy-Efficient Power Allocation for UAV Cognitive Radio Systems”, 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). DOI: 10.1109/VTCFall.2017.8287971.
[8] J. Huang, W. Mei, J. Xu, Q. Ling, Z. Rui, “Cognitive UAV Communication via Joint Maneuver and Power Control”, IEEE Transactions on Communications, Vol. 67, No. 11, November 2019. DOI: 10.1109/TCOMM.2019.2931322.
[9] G. Hattab, D. Cabric, “Energy-Efficient Massive IoT Shared Spectrum Access over UAV-enabled Cellular Networks”, Accepted for publication in IEEE Transactions on Communications, 2020. DOI: 10.1109/TCOMM.2020.2998547.
[10] C. Zhang, W. Zhang, “Spectrum Sharing for Drone Networks”, IEEE Journal on Selected Areas in Communications, Vol. 35, No. 1, January 2017. DOI: 10.1109/JSAC.2016.2633040.
[11] X. Ying, M.M. Buddhikot, S. Roy, “SAS-Assisted Coexistence-Aware Dynamic Channel Assignment in CBRS Band”, IEEE Transactions on Wireless Communications, Vol. 17, No. 9, September 2018. DOI: 10.1109/TWC.2018.2858261.
[12] T. Kohonen, “Self-Organizing Maps”, Series in Information Sciences, Vol. 30, Springer-Verlag Berlin Heidelberg, Third ed., 2001.
[13] K. Bechta, “Radio resource allocation”, International Application No.: PCT/FI2017/050149.
[14] Y. Yu, E. Dutkiewicz, X. Huang, M. Mueck, G. Fang, “Performance Analysis of Soft Frequency Reuse for Inter-cell Interference Coordination in LTE Networks”, 2010 10th International Symposium on Communications and Information Technologies. DOI: 10.1109/ISCIT.2010.5665044.
[15] 3GPP TS 38.901, “Release 16. Study on channel model for frequencies from 0.5 to 100 GHz”, January 2020.

Go to article

Authors and Affiliations

Kamil Bechta
1

  1. Mobile Networks Business Division of Nokia
Download PDF Download RIS Download Bibtex

Abstract

Is this article simulation of statistical measurements is performed on the basis of which the analysis of the standard deviation of the obtained results is carried out. It is shown that the standard deviation is minimum and independent from measurement duration while an object is in the state of equilibrium. For objects in a stationary non-equilibrium state the standard deviation depends on the duration measurements and the parameters of the state. The influence of these factors on the standard deviation is assessed with equation which includes the relaxation time. The value of the relaxation time is determined by approximating the energy spectrum of the studied signals. The analysis of energy spectra showed that the spectrum of white noise is inherent in objects in equilibrium; the flicker component of the spectrum occurs when the state of the object deviates from equilibrium.
Go to article

Authors and Affiliations

Krzysztof Przystupa
1
Zenoviy Kolodiy
2
Svyatoslav Yatsyshyn
2
Jacek Majewski
3
Yuriy Khoma
2
Iryna Petrovska
2
Serhiy Lasarenko
2
Taras Hut
2

  1. Department Automation, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  2. Lviv Polytechnic National University, Institute of Computer Technologies, Automatics and Metrology, S. Bandera Str. 28a, 79013, Lviv, Ukraine
  3. Department of Automation and Metrology, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we show why the descriptions of the sampled signal used in calculation of its spectrum, that are used in the literature, are not correct. And this finding applies to both kinds of descriptions: the ones which follow from an idealized way of modelling of the signal sampling operation as well as those which take into account its non-idealities. The correct signal description, that results directly from the way A/D converters work (regardless of their architecture), is presented and dis-cussed here in detail. Many figures included in the text help in its understanding.
Go to article

Authors and Affiliations

Andrzej Borys
1
ORCID: ORCID

  1. Department of Marine Telecommunications, Faculty of Electrical Engineering, Gdynia Maritime University, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this article is revealed the systems of a good delivery witch implement unmanned aerial vehicles during providing the service. the one channel systems of a goods delivery are a goal of this research work. the close analysing of their functional features, the classification, the types and parameters of different systems from this band are presented. in addition, the modelling of the different types of the one channel systems of goods delivery are has done.

Go to article

Authors and Affiliations

Roman N. Kvyetnyy
Yaroslav A. Kulyk
Bogdan P. Knysh
Yuryy Yu. Ivanov
Andrzej Smolarz
Orken Mamyrbaev
Aimurat Burlibayev
Download PDF Download RIS Download Bibtex

Abstract

Using Langmuir and Langmuir-Blodgett techniques molecular films of chlorinated perylene derivatives, namely tetra-n-butyl-1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxylate (PCn for n = 1, 5, 9) have been studied. The Langmuir films of pure compounds and mixed with liquid crystalline 4-octyl-4′-cyanobiphenyl (8CB) were characterized by surface pressure-mean molecular area isotherms. An additive rule reveals miscibility of all the dyes with 8CB but shows different types of intermolecular interaction forces. The pure and mixed Langmuir films were transferred onto quartz plates and characterized spectroscopically. Absorption and fluorescence spectra were recorded for the samples in form of diluted chloroform solution, the dye with 8CB mixtures in monomolecular Langmuir-Blodgett films and in liquid crystal cells. Different tendency to aggregation of the dye with short and long alkyl chains was observed. It is shown that the dye molecule stacking and aggregation of the chlorinated perylene dyes depend on the dye concentration and are related to the torsion of the perylene core.

Go to article

Authors and Affiliations

A. Modlińska
E. Chrzumnicka
T. Martyński
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a simulation study of the simultaneous reconstruction of the non-smooth strain distribution of an optical fiber Bragg grating and its temperature, which is based on the reflection spectrum of the reflected beam of the grating. The transition matrix method was used to model the reflection spectrum of the grating, and the nonlinear Nelder- Mead optimization method was used to simultaneously reconstruct the strain distribution along the grating and its temperature. The results of simulations of simultaneous reconstruction of the strain profile and temperature indicate good accord with the strain profiles and temperature set. The reconstruction errors of the strain profiles are less than 1.2 percent and the temperature change errors are less than 0.2 percent, with a noise level of 5 percent.
Go to article

Authors and Affiliations

Małgorzata Detka
1
Cezary Kaczmarek
2

  1. Faculty of Electrical Engineering, Automatic Control and Computer Science, Kielce University of Technology, Poland
  2. Faculty of Electrical Engineering and ComputerScience, Lublin University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents modelling using artificial neural networks (ANN) of the phenomenon of creep of comply polymer SIKA PS which can be used in various applications in civil engineering. Data for modelling was gathered in compressive experiments conveyed under a set of fixed conditions of compressive stress and temperature. Part of the datawas pre-processed by smoothing and rediscretisation and served as inputs and targets for network training and part of the data was left raw as control set for verification of prognosing capability. Assumed neural network architectures were one- and two-layer feedforward networks with Bayesian regularisation as a learning method. Altogether 55 networks with 8 to 12 neurons in varying structural configurations were trained. Fitting and prognosing verification was performed using mean absolute relative error as a measure; also, results were plotted and assessed visually. In result, the research allowed for formulation of a new rheological model for comply polymer SIKA PS in time, stress and temperature field domain with fitting quality of mean absolute relative error 1.3% and prognosis quality of mean absolute relative error 8.73%. The model was formulated with the use of a two-layer network with 5+5 neurons.
Go to article

Authors and Affiliations

Anna M. Stręk
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, ul. Warszawska 24, 31-155 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work presents an analysis of vibration signals for bearing defects using a proposed approach that includes several methods of signal processing. The goal of the approach is to efficiently divide the signal into two distinct components: a meticulously organized segment that contains relatively straightforward information, and an inherently disorganized segment that contains a wealth of intricately complex data. The separation of the two component is achieved by utilizing the weighted entropy index (WEI) and the SVMD algorithm. Information about the defects was extracted from the envelope spectrum of the ordered and disordered parts of the vibration signal. Upon applying the proposed approach to the bearing fault signals available in the Paderborn university database, a high amplitude peak can be observed in the outer ring fault frequency (45.9 Hz). Likewise, for the signals available in XJTU-SY, a peak is observed at the fault frequency (108.6 Hz).
Go to article

Bibliography

[1] A. Nabhan, N.M. Ghazaly, A. Samy, and M.O. Mousa. Bearing fault detection techniques – a review. Turkish Journal of Engineering, Sciences and Technology, 3(2):1–18, 2015.
[2] P.P. Kharche and S.V. Kshirsagar. Review of fault detection in rolling element bearing. International Journal of Innovative Research in Advanced Engineering, 1(5):169–174, 2014.
[3] Y. Du, S. Zhou, X. Jing, Y. Peng, H. Wu, and N. Kwok. Damage detection techniques for wind turbine blades: A review. Mechanical Systems and Signal Processing, 141:106445, 2020. doi: 10.1016/j.ymssp.2019.106445.
[4] Z. Hameed, Y.S. Hong, Y.M. Cho, S.H. Ahn, and C.K. Song. Condition monitoring and fault detection of wind turbines and related algorithms: A review. Renewable and Sustainable Energy Reviews, 13(1):1–39, 2009. doi: 10.1016/j.rser.2007.05.008.
[5] K. Bouaouiche, Y. Menasria, and D. Khalfa. Diagnosis of rotating machine defects by vibration analysis. Acta IMEKO, 12(1):1–6, 2023. doi: 10.21014/actaimeko.v12i1.1438.
[6] S. Riaz, H. Elahi, K. Javaid, and T. Shahzad. Vibration feature extraction and analysis for fault diagnosis of rotating machinery-a literature survey. Asia Pacific Journal of Multidisciplinary Research, 5(1):103–110, 2017.
[7] M. Avoci Ugwiri, M. Mpia, and A. Lay-Ekuakille. Vibrations for fault detection in electric machines. IEEE Instrumentation & Measurement Magazine, 23(1):66–72, 2020. doi: 10.1109/MIM.2020.8979527.
[8] T. Liu, S. Yan, and W. Zhang. Time–frequency analysis of nonstationary vibration signals for deployable structures by using the constant-Q nonstationary gabor transform. Mechanical Systems and Signal Processing, 75:228–244, 2016. doi: 10.1016/j.ymssp.2015.12.015.
[9] K. Dragomiretskiy and D. Zosso. Variational mode decomposition. IEEE Transactions on Signal Processing, 62(3):531–544, 2014. doi: 10.1109/TSP.2013.2288675.
[10] M. Nazari and S.M. Sakhaei. Successive variational mode decomposition. Signal Processing, 174:107610, 2020. doi: /10.1016/j.sigpro.2020.107610.
[11] Y. Miao, B. Zhang, J. Lin, M. Zhao, H. Liu, Z. Liu, and H. Li. A review on the application of blind deconvolution in machinery fault diagnosis. Mechanical Systems and Signal Processing, 163:108202, 2022. doi: 10.1016/j.ymssp.2021.108202.
[12] T. Barszcz and N. Sawalhi. Fault detection enhancement in rolling element bearings using the minimum entropy deconvolution. Archives of Acoustics, 37(2):131–141, 2012. doi: 10.2478/v10168-012-0019-2.
[13] T. Barszcz and A. Jabłoński. A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram. Mechanical Systems and Signal Processing, 25(1):431–451, 2011. doi: 10.1016/j.ymssp.2010.05.018.
[14] A. Moshrefzadeh and A. Fasana. The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis. Mechanical Systems and Signal Processing, 105:294–318, 2018. doi: 10.1016/j.ymssp.2017.12.009.
[15] D. Neupane and J. Seok. Bearing fault detection and diagnosis using Case Western Reserve University dataset with deep learning approaches: A review. IEEE Access, 8:93155–93178, 2020. doi: 10.1109/ACCESS.2020.2990528.
[16] K. Bouaouiche, Y. Menasria, and D. Khalifa. Detection of defects in a bearing by analysis of vibration signals. Diagnostyka, 24(2):2023203, 2023. doi: 10.29354/diag/162230.
[17] G. Chen, W. Xie, and Y. Zhao. Wavelet-based denoising: A brief review. In 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP), pages 570–574, Beijing, China, 2013. IEEE. doi: 10.1109/ICICIP.2013.6568140.
[18] M. Rhif, B.A. Abbes, I.R. Farah, B. Martínez, and Y.-F. Sang. Wavelet transform application for/in non-stationary time-series analysis: A review. Applied Sciences, 9(7):1345, 2019. doi: 10.3390/app9071345.
[19] A. Dibaj, R. Hassannejad, M.M. Ettefagh, and M.M. Ehghaghi. Incipient fault diagnosis of bearings based on parameter-optimized VMD and envelope spectrum weighted kurtosis index with a new sensitivity assessment threshold. ISA Transactions, 114:413–433, 2021. doi: 10.1016/j.isatra.2020.12.041.
[20] Y. Li, W. Sun, R. Jiang, and Y. Han. Signal-segments cross-coherence method for nonlinear structural damage detection using free-vibration signals. Advances in Structural Engineering, 23(6):1041–1054, 2020. doi: 10.1177/1369433219886962.
[21] J. Yang, C. Zhou, and X. Li. Research on fault feature extraction method based on parameter optimized variational mode decomposition and robust independent component analysis. Coatings, 12(3):419, 2022. doi: 10.3390/coatings12030419.
[22] R.M. Mehmood, R. Du, and H.J. Lee. Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors. IEEE Access, 5:14797–14806, 2017. doi: 10.1109/ACCESS.2017.2724555.
[23] S.-H. Oh, Y.-R. Lee, and H.-N. Kim. A novel EEG feature extraction method using Hjorth parameter. International Journal of Electronics and Electrical Engineering, 2(2):106–110, 2014. doi: 10.12720/ijeee.2.2.106-110.
[24] Z. Wang, J. Zhou, J. Wang, W. Du, J. Wang, X. Han, and G. He. A novel fault diagnosis method of gearbox based on maximum kurtosis spectral entropy deconvolution. IEEE Access, 7:29520–29532, 2019. doi: 10.1109/ACCESS.2019.2900503.
[25] B. Bono, J. Arnau, R. Alarcón, and M.J. Blanca. Bias, precision, and accuracy of skewness and kurtosis estimators for frequently used continuous distributions. Symmetry, 12(1):19, 2019. doi: 10.3390/sym12010019.
[26] S. Kim, D. An, and J.-H. Choi. Diagnostics 101: A tutorial for fault diagnostics of rolling element bearing using envelope analysis in MATLAB. Applied Sciences, 10(20):7302, 2020. doi: 10.3390/app10207302.
[27] X. Ye, Y. Hu, J. Shen, R. Feng, and G. Zhai. An improved empirical mode decomposition based on adaptive weighted rational quartic spline for rolling bearing fault diagnosis. IEEE Access, 8:123813–123827, 2020. doi: 10.1109/ACCESS.2020.3006030.
[28] V. Kannan, H. Li, and D.V. Dao. Demodulation band optimization in envelope analysis for fault diagnosis of rolling element bearings using a real-coded genetic algorithm. IEEE Access, 7:168828–168838, 2019. doi: 10.1109/ACCESS.2019.2954704.
[29] P.H. Jain and S.P. Bhosle. Analysis of vibration signals caused by ball bearing defects using timedomain statistical indicators. International Journal of Advanced Technology and Engineering Exploration, 9(90):700, 2022. doi: 10.19101/IJATEE.2021.875416.
[30] C.R. Soto-Ocampo, J.M. Mera, J.D. Cano-Moreno, and J.L. Garcia-Bernardo. Low-cost, highfrequency, data acquisition system for condition monitoring of rotating machinery through vibration analysis-case study. Sensors, 20(12):3493, 2020. doi: 10.3390/s20123493.
[31] XJTU-SY bearing database. https://biaowang.tech/xjtu-sy-bearing-datasets/.
[32] Paderborn University database. http://mb.uni-paderborn.de/kat/datacenter.
[33] G.L. McDonald, Q. Zhao, and M.J. Zuo. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection. Mechanical Systems and Signal Processing, 33:237–255, 2012. doi: 10.1016/j.ymssp.2012.06.010.
[34] H. Cui, Y. Guan, and H. Chen. Rolling element fault diagnosis based on VMD and sensitivity MCKD. IEEE Access, 9:120297–120308, 2021. doi: 10.1109/ACCESS.2021.3108972.
Go to article

Authors and Affiliations

Karim Bouaouiche
1
ORCID: ORCID
Yamina Menasria
1
ORCID: ORCID
Dalila Khalfa
1
ORCID: ORCID

  1. Electromechanical Engineering Laboratory, Badji Mokhtar University, Annaba, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The article presents conceptions and theories of expert knowledge, as well as discussions on the epistemological status of expert knowledge, cognitive competences falling within the scope of expertise and expert authority. They are treated as a kind of extra-institutional knowledge, referring only to a small extent to the scientific knowledge and academic circles. The positions of Alvin Goldman, Harry Collins and R. Evans, Z. Majdik and W. Keith, T. Burge and J. Shanteau on the validity of expert knowledge and methods of its justification are presented. The paper points to the problematic nature and certain limitations of the traditional perspective on the credibility of expert knowledge and expert authority. On the example of the phenomenon of the autism spectrum and traditional judgments about it—in particular, expert opinions issued about people covered by it, as well as common opinions and stereotypes— the discussion on the changes taking place in this field of knowledge and social practice is presented. Conceptions of expertise by experience in the subject of autism are discussed, including the so-called self-advocacy and self-advocacy scientists. These new cognitive attitudes and social functions of autism spectrum experts are also analyzed from the point of view of the epistemological credibility of this type of knowledge and competence.
Go to article

Authors and Affiliations

Maciej Wodziński
1
Marek Hetmański
2

  1. Szkoła Doktorska Nauk Humanistycznych UMCS, Pl. M.Curie-Skłodowskiej 4, 20-031 Lublin
  2. Instytut Filozofii UMCS, Pl. M. Curie-Skłodowskiej 4, 20-031 Lublin
Download PDF Download RIS Download Bibtex

Abstract

The subject of this work was the investigation of zeolite as a sorbent of toxic gases. In Nizny Hrabovec in the Slovak republic, two layers of zeolite with the active component clinoptilolite can be found. The study presented here investigated the ability of this natural zeolite to reduce polycyclic aromatic hydrocarbons (PAH) and NO emissions from engine exhaust. Exhaust gases from combustion engines include toxic components such as carbon monoxide, nitrogen oxides and hydrocarbons. Polycyclic aromatic hydrocarbons (PAH) are a component of hydrocarbons causing harmful influence on life forms. The experiments focused on the potential reduction of these toxic gases based on the sorption and catalytic properties of natural zeolite. Also observed was the influence of chemical adjustment including incorporation of certain metal elements. Chemical analysis by mutually independent technologies served to observe the sorption of PAH with carcinogenic properties on the natural zeolite tested. The experiments showed that chemical modification improved the sorption and catalytic properties of natural zeolite. The PAH were analysed in an extract of the contaminated, thermally-activated natural zeolite and modified zeolite after washing with ammonium chloride, cobalt chloride and copper sulphate. The study also presents results of NO measurements obtained by testing the filter-sorptive automobile system.

Go to article

Authors and Affiliations

Jozef Mačala
Iveta Pandová
Taťána Gondová
Katarína Dubayová
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we present the methods to detect the channel delay profile and the Doppler spectrum of shallow underwater acoustic channels (SUAC). In our channel sounding methods, a short impulse in form of a sinusoid function is successively sent out from the transmitter to estimated the channel impulse response (CIR). A bandpass filter is applied to eliminate the interference from out-of-band (OOB). A threshould is utilized to obtain the maximum time delay of the CIR. Multipath components of the SUAC are specified by correlating the received signals with the transmitted sounding pulse with its shifted phases from 0 to 2π. We show the measured channel parameters, which have been carried out in some lakes in Hanoi. The measured results illustrate that the channel is frequency selective for a narrow band transmission. The Doppler spectrum can be obtained by taking the Fourier transform of the time correlation of the measured channel transfer function. We have shown that, the theoretical maximum Doppler frequency fits well to that one obtained from measurement results.

Go to article

Authors and Affiliations

Van Duc Nguyen
Tien Hoa Nguyen
Hoa Xuan Thi Ho
Download PDF Download RIS Download Bibtex

Abstract

In order to solve the problem of large error of delay estimation in low SNR environment, a new delay estimation method based on cross power spectral frequency domain weighting and spectrum subtraction is proposed. Through theoretical analysis and MATLAB simulation, among the four common weighting functions, it is proved that the cross-power spectral phase weighting method has a good sharpening effect on the peak value of the cross-correlation function, and it is verified that the improved spectral subtraction method generally has a good noise reduction effect under different SNR environments. Finally, the joint simulation results of the whole algorithm show that the combination of spectrum subtraction and crosspower spectrum phase method can effectively sharpen the peak value of cross-correlation function and improve the accuracy of time delay estimation in the low SNR environment. The results of this paper can provide useful help for sound source localization in complex environments.

Go to article

Authors and Affiliations

Feng Bin
Xu Lei
Download PDF Download RIS Download Bibtex

Abstract

The development in industrial systems leads to the augmentation in the consumption of the power. Therefore, this development makes use of multiphase machines. The use of multiphase machines caused several problems and defects. Electrical energy is mainly distributed in a three-phase system to provide the electrical power necessary for the electrical engineering equipment and materials. The sinusoidal aspect of the required original voltage primarily preserves its essential qualities for transmitting useful power to terminal equipment. When the voltage waveform is no longer sinusoidal, perturbations are encountered, which generate malfunctions and overheating of the receivers and the equipment connected to the same electrical supply network. The main disturbing phenomena are harmonics, voltage fluctuations, voltage unbalances, electromagnetic fields, and electrostatic discharges. This present work aims to study the effects of harmonic pollution and voltage unbalance on the five-phase permanent magnet synchronous machine using spectrum current analysis and wavelet transform.
Go to article

Authors and Affiliations

Ahmed Amine Kebir
1
ORCID: ORCID
Mouloud Ayad
1
ORCID: ORCID
Saoudi Kamel
1
ORCID: ORCID

  1. LPM3E Laboratory, Faculty of Sciences and Applied Sciences, University of Bouira, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The Elastic Optical Networks (EON) provide a solution to the massive demand for connections and extremely high data traffic with the Routing Modulation and Spectrum Assignment (RMSA) as a challenge. In previous RMSA research, there was a high blocking probability because the route to be passed by the K-SP method with a deep neural network approach used the First Fit policy, and the modulation problem was solved with Modulation Format Identification (MFI) or BPSK using Deep Reinforcement Learning. The issue might be apparent in spectrum assignment because of the influence of Advanced Reservation (AR) and Resource Periodic Arrangement (RPA), which is a decision block on a connection request path with both idle and active data traffic. The study’s limitation begins with determining the modulation of m = 1 and m = 4, followed by the placement of frequencies, namely 13 with a combination of standard block frequencies 41224–24412, so that the simulation results are less than 0.0199, due to the combination of block frequency slices with spectrum allocation rule techniques.
Go to article

Authors and Affiliations

R.J. Silaban
1
M. Alaydrus
1
U. Umaisaroh
1

  1. Department of Electrical Engineering, Universitas Mercu Buana, Jakarta, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Elastic optical networking is a potential candidate to support dynamic traffic with heterogeneous data rates and variable bandwidth requirements with the support of the optical orthogonal frequency division multiplexing technology (OOFDM). During the dynamic network operation, lightpath arrives and departs frequently and the network status updates accordingly. Fixed routing and alternate routing algorithms do not tune according to the current network status which are computed offline. Therefore, offline algorithms greedily use resources with an objective to compute shortest possible paths and results in high blocking probability during dynamic network operation. In this paper, adaptive routing algorithms are proposed for shortest path routing as well as alternate path routing which make routing decision based on the maximum idle frequency slots (FS) available on different paths. The proposed algorithms select an underutilized path between different choices with maximum idle FS and efficiently avoids utilizing a congested path. The proposed routing algorithms are compared with offline routing algorithms as well as an existing adaptive routing algorithm in different network scenarios. It has been shown that the proposed algorithms efficiently improve network performance in terms of FS utilization and blocking probability during dynamic network operation.

Go to article

Authors and Affiliations

Akhtar Nawaz Khan
Download PDF Download RIS Download Bibtex

Abstract

In this paper, it has been shown that the spectrum aliasing and folding effects occur only in the case of non-ideal signal sampling. When the duration of the signal sampling is equal to zero, these effects do not occur at all. In other words, the absolutely necessary condition for their occurrence is just a nonzero value of this time. Periodicity of the sampling process plays a secondary role.
Go to article

Authors and Affiliations

Andrzej Borys
1
ORCID: ORCID

  1. Department of Marine Telecommunications, Faculty of Electrical Engineering, Gdynia Maritime University, Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

A new model of ideal signal sampling operation is developed in this paper. This model does not use the Dirac comb in an analytical description of sampled signals in the continuous time domain. Instead, it utilizes functions of a continuous time variable, which are introduced in this paper: a basic Kronecker time function and a Kronecker comb (that exploits the first of them). But, a basic principle behind this model remains the same; that is it is also a multiplier which multiplies a signal of a continuous time by a comb. Using a concept of a signal object (or utilizing equivalent arguments) presented elsewhere, it has been possible to find a correct expression describing the spectrum of a sampled signal so modelled. Moreover, the analysis of this expression showed that aliases and folding effects cannot occur in the sampled signal spectrum, provided that the signal sampling is performed ideally.
Go to article

Authors and Affiliations

Andrzej Borys
1
ORCID: ORCID

  1. Department of Marine Telecommunications, Faculty of Electrical Engineering, Gdynia Maritime University, Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article is devoted to the development of a method for increasing the efficiency of communication channels of unmanned aerial vehicles (UAVs) in the conditions of electronic warfare (EW). The author analyses the threats that may be caused by the use of electronic warfare against autonomous UAVs. A review of some technologies that can be used to create original algorithms for countering electronic warfare and increasing the autonomy of UAVs on the battlefield is carried out. The structure of modern digital communication systems is considered. The requirements of unmanned aerial vehicle manufacturers for onboard electronic equipment are analyzed, and the choice of the hardware platform of the target radio system is justified. The main idea and novelty of the proposed method are highlighted. The creation of a model of a cognitive radio channel for UAVs is considered step by step. The main steps of modelling the spectral activity of electronic warfare equipment are proposed. The main criteria for choosing a free spectral range are determined. The type of neural network for use in the target cognitive radio system is substantiated. The idea of applying adaptive coding in UAV communication channels using multicomponent turbo codes in combination with neural networks, which are simultaneously used for cognitive radio, has been further developed.
Go to article

Authors and Affiliations

Serhii Semendiai
1
Yuliіa Tkach
1
Mykhailo Shelest
1
Oleksandr Korchenko
2
Ruslana Ziubina
3
Olga Veselska
3

  1. Chernihiv Polytechnic NationalUniversity, Chernihiv, Ukraine
  2. Department of Information Technology Security of National Aviation University, Kyiv, Ukraine
  3. Department of Computer Science andAutomatics of the University of Bielsko-Biala, Bielsko-Biala, Poland
Download PDF Download RIS Download Bibtex

Abstract

It is shown that a number of equivalent choices for the calculation of the spectrum of a sampled signal are possible. Two such choices are presented in this paper. It is illustrated that the proposed calculations are more physically relevant than the definition currently in use.
Go to article

Bibliography

[1] A. Borys, “Spectrum aliasing does not occur in case of ideal signal sampling,” Intl Journal of Electronics and Telecommunications, vol. 67, no. 1, pp. 71-77, 2021.
[2] J. H. McClellan, R. Schafer, M. Yoder, DSP First. London, England: Pearson, 2015.
[3] M. Vetterli, J. Kovacevic, V. K. Goyal, Foundations of Signal Processing. Cambridge, England: Cambridge University Press, 2014.
[4] A. V. Oppenheim, R. W. Schafer, J. R. Buck, Discrete-Time Signal Processing. New Jersey, USA: Prentice Hall, 1998.
[5] R. J. Marks, Introduction to Shannon Sampling and Interpolation Theory. New York, USA: Springer-Verlag, 1991.
[6] R. N. Bracewell, The Fourier Transform and Its Applications. New York, USA: McGraw-Hill , 2000.
[7] V. K. Ingle, J. G. Proakis, Digital Signal Processing Using Matlab. Stamford, CT, USA: Cengage Learning, 2012.
[8] P. Prandoni, M. Vetterli, Signal Processing for Communications. Lausanne, Switzerland: EPFL Press, 2008.
[9] N.T. Thao, M. Vetterli, “Deterministic analysis of oversampled A/D conversion and decoding improvement based on consistent estimates”, IEEE Transactions on Signal Processing, vol. 42, no. 3, pp. 519-531, 1994.
[10] K. Adam, A. Scholefield, M. Vetterli, “Encoding and Decoding Mixed Bandlimited Signals Using Spiking Integrate-and-Fire Neurons”, 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 9264-9268, May 2020.
[11] R. Alexandru, P. L. Dragotti, “Reconstructing classes of non-bandlimited signals from time encoded information”, IEEE Transactions on Signal Processing, vol. 68, pp. 747-763, 2020.
[12] A. Lazar, L. T. Toth, “Perfect recovery and sensitivity analysis of time encoded bandlimited signals,” IEEE Transactions on Circuits and Systems – I: Regular Papers, vol. 51, no. 10, pp. 2060-2073, 2004.
[13] J. A. Urigueen, T. Blu, P. L. Dragotti, “FRI Sampling with arbitrary kernels”, IEEE Transactions on Signal Processing, vol. 61, pp. 5310-5323, 2013.
[14] M. Vetterli, P. Marziliano, T. Blu, “Sampling signals with finite rate of innovation”, IEEE Transactions on Signal Processing, vol. 50, no. 6, pp. 1417-1428, 2002.
[15] P. L. Dragotti, M. Vetterli, and T. Blu, “Sampling moments and recon- structing signals of finite rate of innovation: Shannon meets strang-fix,” IEEE Transactions on Signal Processing, vol. 55, no. 5, pp. 1741-1757, 2007.
[16] R. Tur, Y. C. Eldar, Z. Friedman, “Innovation rate sampling of pulse streams with application to ultrasound imaging,” IEEE Transactions on Signal Processing, vol. 59, no. 4, pp. 1827-1842, 2011.
[17] M. Unser, “Sampling – 50 years after Shannon,” Proceedings of the IEEE, vol. 88, no. 4, pp. 569-587, 2000.
[18] G. Ortiz-Jimenez, M. Coutino, S. P. Chepuri, G. Leus, “Sparse sampling for inverse problems with tensors”, IEEE Transactions on Signal Processing, vol. 67, no. 12, pp. 3272-3286, 2019.
[19] S. P. Chepuri, G. Leus, “Graph sampling for covariance estimation”, IEEE Transactions on Signal and Information Processing over Networks, vol. 3, no. 3, pp. 451-466, 2017.
[20] M. R. D. Rodrigues, Y. C, Eldar, Information-Theoretic Methods in Data Science. Cambridge, England: Cambridge University Press, 2021.
[21] M. R. D. Rodrigues, H. Bölcskei, S. Draper, Y. Eldar, V. Tan, “Introduction to the issue on information-theoretic methods in data acquisition, analysis, and processing”, IEEE Journal on Selected Topics in Signal Processing, vol. 66, no. 9, pp. 2314-2329, 2018.
[22] G. Matz, H. Bölcskei, and F. Hlawatsch, “Time-frequency foundations of communications”, IEEE Signal Processing Magazine, vol. 30, no. 6, pp. 87-96, 2013.
[23] Y. Eldar, H. Bölcskei, “Geometrically uniform frames”, IEEE Transactions on Information Theory, vol. 49, no. 4, pp. 993-1006, 2003.
[24] Y. Kopsinis, K. Slavakis, S. Theodoridis “On line sparse system identification and signal reconstruction using projections onto weighted l1 balls”, IEEE Transactions on Signal Processing, vol. 59, no. 3, pp. 936-952, 2011.
[25] A. Morgado, R. del Río, J.M. de la Rosa, “High-efficiency cascade sigma-delta modulators for the next generation software-defined-radio mobile systems,” IEEE Trans. on Instrumentation and Measurement, vol. 61, pp. 2860-2869, 2012.
[26] L. Zhao, Z. Chen, Y. Yang, L. Zou, Z. J. Wang, “ICFS clustering with multiple representatives for large data”, IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 3, pp. 728-738, 2019.
[27] V. Poor, An Introduction to Signal Detection and Estimation. Berlin, Germany: Springer-Verlag, 1994.
[28] T. Kailath, V. Poor, “Detection of stochastic processes”, IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2230-2231, 1998.
[29] A. Yeredor, “Blind channel estimation using first and second derivatives of the characteristic function”, IEEE Signal Processing Letters, vol. 9, no. 3 pp. 100-103, 2002.
[30] J.J. Clark, M.R. Palmer, P.D. Lawrence, “A transformation method for the reconstruction of functions from non-uniformly spaced samples,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 33, pp. 1151-1165, 1985.
[31] L. Heyoung, Z.Z. Bien, “A variable bandwidth filter for estimation of instantaneous frequency and reconstruction of signals with time-varying spectral content,” IEEE Transactions on Signal Processing, vol. 59, pp. 2052-2071, 2011.
[32] E. Lee, D. Messerschmitt, Digital Communication. Boston, USA: Kluwer, 1994.
[33] S. Mallat, A Wavelet Tour of Signal Processing. San Diego, USA: Aca-demic, 1998.
[34] P. Stoica, R. Moses, Introduction to Spectral Analysis. Englewood Cliffs, USA: Prentice-Hall, 2000.
[35] H. P. E. Stern, S.A. Mahmoud, Communication Systems: Analysis and Design. Upper Saddle River, USA: Prentice-Hall, 2004.
[36] M. Vetterli, J. Kovacevic, Wavelets and Subband Coding. Englewood Cliffs, USA: Prentice-Hall, 1995.
[37] E. J. Candè, M. B. Wakin, “An introduction to compressive sampling”, IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21-30, 2008.
[38] A. Zayed, Advances in Shannon’s Sampling Theory. Boca Raton, USA: CRC Press, 1993.
[39] R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 539–550, 1999.
[40] P. P. Vaidyanathan, “Generalizations of the sampling theorem: seven decades after Nyquist,” IEEE Trans. Circuits Systems I: Fundamental Theory and Applications, vol. 48, no. 9, pp. 1094–1109, 2001.
[41] H. J. Landau, “Sampling, data transmission, and the Nyquist rate”, Proceedings of the IEEE, vol. 55, no. 10, pp. 1701-1706, 1967.
[42] R.G. Lyons, Understanding Digital Signal Processing. Reading, USA: Addison-Wesley, 1997.
[43] A. J. Jerri, “The Shannon sampling theorem - its various extensions and applications: a tutorial review,” Proceedings of the IEEE, vol. 65, no. 11, pp. 1565–1596, 1977.
[44] Y. C. Eldar, T. Michaeli, “Beyond bandlimited sampling,” IEEE Signal Processing Magazine, vol. 26, no. 3, pp. 48–68, 2009.
[45] A. Papoulis, “Error analysis in sampling theory,” Proceedings of the IEEE, vol. 54, no. 7, pp. 947–955, 1966.
[46] A. Papoulis, “Generalized sampling expansion,” IEEE Transactions on Circuits and Systems, vol. 24, no. 11, pp. 652–654, 1977.
[47] R. G. Vaughan, N. L. Scott, D. R. White, “The theory of bandpass sampling,” IEEE Transactions on Signal Processing, vol. 39, no. 9, pp. 1973–1984, 1991.
[48] Y. M. Lu, M. N. Do, “A theory for sampling signals from a union of subspaces,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2334–2345, 2008.
[49] C. Herley, P. W. Wong, “Minimum rate sampling and reconstruction of signals with arbitrary frequency support,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1555–1564, 1999.
[50] L. Schwartz, Théorie des Distributions. Paris, France: Hermann, 1950-1951.
[51] A. Borys, “Spectrum aliasing does occur only in case of non-ideal signal sampling”, Intl Journal of Electronics and Telecommunications, vol. 67, no. 1, pp. 79-85, 2021.
[52] S. Boyd, L. Chua, “Fading memory and the problem of approximating nonlinear operators with Volterra series,” IEEE Transactions on Circuits and Systems, vol. 32, no. 11, pp. 1150-1161, 1985.
[53] L. V. Kantorovich, G. P. Akilov, Functional Analysis. Oxford, England: Pergamon Press, 1982.
[54] I. W. Sandberg, “Linear maps and impulse responses,” IEEE Transactions on Circuits and Systems, vol. 35, no. 2, pp. 201-206, 1988.
[55] I. W. Sandberg, “Causality and the impulse response scandal,” IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, vol. 50, no. 6, pp. 810-813, 2003.

Go to article

Authors and Affiliations

Andrzej Borys
1
ORCID: ORCID

  1. Department of Marine Telecommunications, Faculty of Electrical Engineering, Gdynia Maritime University, Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a new proof of ambiguity of the formula describing the aliasing and folding effects in spectra of sampled signals is presented. It uses the model of non-ideal sampling operation published by Vetterli et al. Here, their model is modified and its black-box equivalent form is achieved. It is shown that this modified model delivers the same output sequences but of different spectral properties. Finally, a remark on two possible understandings of the operation of non-ideal sampling is enclosed as well as fundamental errors that are made in perception and description of sampled signals are considered.
Go to article

Authors and Affiliations

Andrzej Borys
1
ORCID: ORCID

  1. Department of Marine Telecommunications, Faculty of Electrical Engineering, Gdynia Maritime University, Gdynia, Poland

This page uses 'cookies'. Learn more