Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The recently proposed q-rung orthopair fuzzy set (q-ROFS) characterized by a membership degree and a non-membership degree is powerful tool for handling uncertainty and vagueness. This paper proposes the concept of q-rung orthopair linguistic set (q-ROLS) by combining the linguistic term sets with q-ROFSs. Thereafter, we investigate multi-attribute group decision making (MAGDM) with q-rung orthopair linguistic information. To aggregate q-rung orthopair linguistic numbers ( q-ROLNs), we extend the Heronian mean (HM) to q-ROLSs and propose a family of q-rung orthopair linguistic Heronian mean operators, such as the q-rung orthopair linguistic Heronian mean (q-ROLHM) operator, the q-rung orthopair linguistic weighted Heronian mean (q-ROLWHM) operator, the q-rung orthopair linguistic geometric Heronian mean (q-ROLGHM) operator and the q-rung orthopair linguistic weighted geometric Heronian mean (q-ROLWGHM) operator. Some desirable properties and special cases of the proposed operators are discussed. Further, we develop a novel approach to MAGDM within q-rung orthopair linguistic context based on the proposed operators. A numerical instance is provided to demonstrate the effectiveness and superiorities of the proposed method.

Go to article

Authors and Affiliations

Li Li
Runtong Zhang
Jun Wang
Xiaopu Shang
Download PDF Download RIS Download Bibtex

Abstract

Spherical fuzzy sets are more powerful in modelling the uncertain situations than picture fuzzy sets, fermatean fuzzy sets, Pythagorean fuzzy sets, intuitionistic fuzzy sets, and fuzzy sets. In this paper, we first define the variance and covariance of spherical fuzzy sets. Then, using variance and covariance, we define the unique spherical fuzzy set correlation metric in line with the statistical coefficient of correlation. Two spherical fuzzy sets are correlated in both direction and strength using the provided measure of correlation. We discussed its many characteristics. We compared the measure of correlation with the current ones through linguistic variables. We established its validity by showing its application in bidirectional approximate reasoning. We also resolve a pattern identification issue in the spherical fuzzy environment using the provided correlation function, and we compare the results with several current measurements.
Go to article

Authors and Affiliations

Abdul Haseeb Ganie
1
ORCID: ORCID
Debashis Dutta
1
ORCID: ORCID

  1. Department of Mathematics, National Institute of Technology, Warangal506004, Telangana, India
Download PDF Download RIS Download Bibtex

Abstract

The article outlines how to use the convergence of collections to determine the position of a mobile device based on the WiFi radio signal strength with the use of fuzzy sets. The main aim is the development of the method for indoor position determination based on existing WiFi network infrastructure indoors. The approach is based on the WiFi radio infrastructure existing inside the buildings and requires operating mobile devices such as smartphones or tablets. An SQL database engine is also necessary as a widespread data interface. The SQL approach is not limited to the determination of the position but also to the creation of maps in which the system dening the position of the mobile device will operate. In addition, implementation issues are presented along with the distribution of the burden of performing calculations and the benets of such an approach for determining the location. The authors describe how to decompose the task of determining the position in a client-server architecture.

Go to article

Authors and Affiliations

Michał Socha
Wojciech Górka
Iwona Kostorz
Download PDF Download RIS Download Bibtex

Abstract

Civil engineering is one of the many fields of occurrences of uncertain parameters. The present paper in an attempt to present and describe the most common methods used for inclusions of uncertain parameters . These methods can be applied in the area of civil engineering as well as for a larger domain. Definitions and short explanations of methods based on probability, interval analysis, fuzzy sets, and convex sets are presented. Selected advantages, disadvantages, and the most common fields of implementation are indicated.

An example of a cantilever beam presented in this paper shows the main differences between the methods. Results of the performed analysis indicate that the use of convex sets allows us to obtain an accuracy of results similar to stochastic models. At the same time, the computational speed characteristic for interval methods is maintained.

Go to article

Authors and Affiliations

J. Pełczyński
Download PDF Download RIS Download Bibtex

Abstract

A group of old apartment houses with the age over 100 years (that is those carried out before the First World War) takes an important place in polish building resources. Technical maintenance of apartment houses, traditional methods erected, is nowadays and will be a valid problem in the nearest future. The results of the work refer to the general population, estimated for 600 objects, that is about 20% of municipal downtown apartment houses in Wrocław.

The purpose of the research was to identify an influence of widely considered maintenance of apartment houses on a degree and intensity of their elements’ deterioration. The goal of the work has been fulfilled by symptoms’ analysis of declining of inspected elements’ exploitation values, that is identification of mechanics of their defects arising.

The range of the work has required creation of original qualitative model of pinpointed defects and its transfer into quantitative one. It has made possible to analyse the reason - effect phenomena „defect - technical wear” relevant to the most important elements of Wroclaw downtown district’s apartment houses. The research procedure has been conducted in accordance of fuzzy sets theory which made possible to describe qualitative model of pinpointed defects and its transfer into a quantitative one.

Go to article

Authors and Affiliations

J. Konior
Download PDF Download RIS Download Bibtex

Abstract

The basis for a mineral deposit delimitation is a qualitative and quantitative assessment of deposit parameters, qualifying a deposit as an economically valuable object. A conventional approach to the mineral deposit recognition and a deposit detailed parameters qualification in the initial stages of development work in the KGHM were presented in the paper. The goals of such recognition were defined, which through a gradual detailed expansion, resulting from the information inflow, allows for the construction of a more complete decision-making model. The description of the deposit parameters proposed in the article in the context of fuzzy logic, enables a presentation of imprecise statements and data, which may be a complement to a traditional description. Selected non-adjustable and adjustable s-norm and t-norm operators were demonstrated. Operators effects were tested for selected ore quality parameters (copper content and deposit thickness) by constructing adequate membership functions. In a practical application, the use of chosen fuzzy logic operators is proposed for the assessment of the qualitative parameters of copper-silver ore in the exploitation blocks for one of the mines belonging to KGHM Polish Copper S.A. The considerations have been extended by including the possibility of using compensation operators.

Go to article

Authors and Affiliations

Mariusz Krzak
Paweł Panajew
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a model for evaluating production strategies, policies and methods based on fuzzy set theory. To illustrate the application of a model, the longitudinal case study was carried out in the sector of automotive components and parts production in Serbia. Within the automotive supplier industry, analysis is concentrated on the Cooper Standard company, one of the world’s most prominent component suppliers. The study was conducted with the management team of the Cooper Standard branch in Serbia. Triangular fuzzy numbers are employed to effectively evaluate the critical areas of production management and overall competitiveness over time. The findings of the empirical survey confirmed the usability and usefulness of the proposed approach. Also, the longitudinal character of this case study provided an opportunity to follow the patterns of change over a period of 5 years (2019–2024).
Go to article

Authors and Affiliations

Aleksandar PESIC
Duska PESIC
Slavko IVKOVIC
Download PDF Download RIS Download Bibtex

Abstract

Spherical fuzzy sets (SFSs) provide more free space for decision makers (DMs) to express preference information from four aspects: approval, objection, abstention and refusal. The partitioned Maclaurin symmetric mean (PMSM) operator is an effective information fusion tool, which can fully capture the interrelationships among any multiple attributes in the same block whereas attributes in different block are unrelated. Therefore, in this paper,we first extendPMSM operator to spherical fuzzy environment and develop spherical fuzzy PMSM (SFPMSM) operator as well as spherical fuzzy weighted PMSM (SFWPMSM) operator. Meanwhile, we discuss some properties and special cases of these two operators. To diminish the impact of extreme evaluation values on decision-making results, then we integrate power average (PA) operator and PMSM operator to further develop spherical fuzzy power PMSM (SFPPMSM) operator and spherical fuzzy weighted power PMSM (SFWPPMSM) operator and also investigate their desirable properties. Subsequently, a new multiple attribute group decision making (MAGDM) method is established based on SFWPPMSM operator under spherical fuzzy environment. Finally, two numerical examples are used to illustrate the proposed method, and comparative analysis with the existing methods to further testy the validity and superiority of the proposed method.
Go to article

Authors and Affiliations

Huiyuan Zhang
1 2
Qiang Cai
3
Guiwu Wei
4 3

  1. School of Mathematics and Statistics, Liupanshui Normal University, Liupanshui 553004, Guizhou, P.R. China
  2. School of Mathematical Sciences, Sichuan Normal University, Chengdu, 610101, P.R. China
  3. School of Business, Sichuan Normal University, Chengdu, 610101, P.R. China
  4. School of Mathematical Sciences, Sichuan NormalUniversity, Chengdu, 610101, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

The linguistic q-rung orthopair fuzzy (L q-ROF) set is an important implement in the research area in modelling vague decision information by incorporating the advantages of q- rung orthopair fuzzy sets and linguistic variables. This paper aims to investigate the multicriteria decision group decision making (MCGDM) with L q-ROF information. To do this, utilizing Hamacher t-norm and t-conorm, some L q-ROF prioritized aggregation operators viz., L q- ROF Hamacher prioritized weighted averaging, and L q-ROF Hamacher prioritized weighted geometric operators are developed in this paper. The defined operators can effectively deal with different priority levels of attributes involved in the decision making processes. In addition, Hamacher parameters incorporated with the proposed operators make the information fusion process more flexible. Some prominent characteristics of the developed operators are also wellproven. Then based on the proposed aggregation operators, an MCGDM model with L q-ROF context is framed. A numerical example is illustrated in accordance with the developed model to verify its rationality and applicability. The impacts of Hamacher and rung parameters on the achieved decision results are also analyzed in detail. Afterwards, a comparative study with other representative methods is presented in order to reflect the validity and superiority of the proposed approach.
Go to article

Authors and Affiliations

Nayana Deb
1
Arun Sarkar
2
Animesh Biswas
1

  1. Department of Mathematics, University of Kalyani, Kalyani – 741235, India
  2. Department of Mathematics, Heramba Chandra College, Kolkata – 700029, India
Download PDF Download RIS Download Bibtex

Abstract

In modern society, people concern more about the evaluation of medical service quality. Evaluation of medical service quality is helpful for medical service providers to supervise and improve their service quality. Also, it will help the public to understand the situation of different medical providers. As a multi-criteria decision-making (MCDM) problem, evaluation of medical service quality can be effectively solved by aggregation operators in interval-valued q-rung dual hesitant fuzzy (IVq-RDHF) environment. Thus, this paper proposes interval-valued q-rung dual hesitant Maclaurin symmetric mean (IVq-RDHFMSM) operator and interval-valued q-rung dual hesitant weighted Maclaurin symmetric mean (IVq-RDHFWMSM) operator. Based on the proposed IVq-RDHFWMSM operator, this paper builds a novel approach to solve the evaluation problem of medical service quality including a criteria framework for the evaluation of medical service quality and a novel MCDM method. What’s more, aiming at eliminating the discordance between decision information and weight vector of criteria determined by decisionmakers (DMs), this paper proposes the concept of cross-entropy and knowledge measure in IVq-RDHF environment to extract weight vector from DMs’ decision information. Finally, this paper presents a numerical example of the evaluation of medical service for hospitals to illustrate the availability of the novel method and compares our method with other MCDM methods to demonstrate the superiority of our method. According to the comparison result, our method has more advantages than other methods.
Go to article

Bibliography

[1] C. Teng, C. Ing, H. Chang, and K. Chung: Development of service quality scale for surgical hospitalization. Journal of the Formosan Medical Association, 106(6), (2007), 475–484, DOI: 10.1016/S0929-6646(09)60297-7.
[2] I. Otay, B. Öztaysi, S. Çevik, and C. Kahraman: Multi-expert performance evaluation of healthcare institutions using an integrated intuitionistic fuzzy AHP&DEA methodology. Knowledge-Based Systems, 33 (2017), 90– 106, DOI: 10.1016/j.knosys.2017.06.028.
[3] J. Shieh, H. Wu, and K. Huang: A DEMATEL method in identifying key success factors of hospital service quality. Knowledge Based Systems, 23(3), (2010), 277–282, DOI: 10.1016/j.knosys.2010.01.013.
[4] M.L. Mccarthy, R. Ding, and S.L. Zeger: A randomized controlled trial of the effect of service delivery information on patient satisfaction in an emergency department fast track. Academic Emergency Medicine, 18(7), (2011), 674–685, DOI: 10.1111/j.1553-2712.2011.01119.x.
[5] L. Fei, J. Lu, and Y. Feng: An extended best-worst multi-criteria decisionmaking method by belief functions and its applications in hospital service evaluation. Computers&Industrial Engineering, 142, (2020), 106355, DOI: 10.1016/j.cie.2020.106355.
[6] E.K. Zavadskas, Z. Turskis, and S. Kildien˙e: State of art surveys of overviews on MCDM/MADM methods. Technological and Economic Development of Economy, 20(1), (2014), 165–179, DOI: 10.3846/20294913.2014.892037.
[7] Y. Xing, R. Zhang, M. Xia,and J. Wang: Generalized point aggregation operators for dual hesitant fuzzy information. Journal of Intelligent and Fuzzy Systems, 33(1), (2017), 515–527, DOI: 10.3233/JIFS-161922.
[8] F. Zhang, S.Wang, J. Sun, J. Ye, and G.K. Liew:Novel parameterized score functions on interval-valued intuitionistic fuzzy sets with three fuzziness measure indexes and their application. IEEE Access, 7, (2018), 8172–8180, DOI: 10.1109/ACCESS.2018.2885794.
[9] H. Zhang, R. Zhang, and H. Huang: Some picture fuzzy dombi heronian mean operators with their application to multi-attribute decision-making. Symmetry, 10(11), (2018), 593, DOI: 10.3390/sym10110593.
[10] K.T. Atanassov: Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), (1986), 87–96, DOI: 10.1016/S0165-0114(86)80034-3.
[11] R.R.Yager: Pythagorean membership grades in multicriteria decision making. IEEE Transactions on Fuzzy Systems, 22(4), (2014), 958–965, DOI: 10.1109/TFUZZ.2013.2278989.
[12] J. Wang, R. Zhang, X. Zhu, Z. Zhou, X. Shang, and W. Li: Some q-rung orthopair fuzzy Muirhead means with their application to multi-attribute group decision making. Journal of Intelligent and Fuzzy Systems, 36(2), (2019), 1599–1614, DOI: 10.3233/JIFS-18607.
[13] R.R. Yager: Generalized orthopair fuzzy sets. IEEE Transactions on Fuzzy Systems, 25(5), (2017), 1222–1230, DOI: 10.1109/TFUZZ.2016.2604005.
[14] P. Liu and P.Wang: Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. International Journal of Intelligent Systems, 33(4), (2017), 259–280, DOI: 10.1002/int.21927.
[15] C. Bonferroni: Sulle medie multiple di potenze. Bollettino dell’Unione Matematica Italiana, 5(3-4), (1950), 267–270. [16] S. Sykora: Mathematical means and averages: Generalized Heronian means. Stan’s Library, Ed. S. Sykora, 3, (2009), DOI: 10.3247/SL3Math 09.002.
[17] C. Maclaurin: A second letter to Martin Folkes, Esq.: concerning the roots of equations, with the demonstration of other rules in algebra. Phil, Transaction (1683–1775), 394, (1729), 59–96.
[18] R.F. Muirhead: Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters. Proceedings of the Edinburgh Mathematical Societ., 21, (1902), 144–162, DOI: 10.1017/ S001309150003460X.
[19] P. Liu and J. Liu: Some q-rung orthopair fuzzy Bonferroni mean operators and their application to multi-attribute group decision making. International Journal of Intelligent Systems, 33(2), (2018), 315–347, DOI: 10.1002/int.21933.
[20] G. Wei, H. Gao, and Y. Wei: Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. International Journal of Intelligent Systems, 33(7), (2017), 1426–1458, DOI: 10.1002/int.21985.
[21] P. Liu and D. Li: Some Muirhead mean operators for intuitionistic fuzzy numbers and their applications to group decision making. PloS ONE, 12(1), (2017), 423–431, DOI: 10.1371/journal.pone.0168767.
[22] G. Wu, H. Garg, H. Gao, and C. Wei: Interval-valued Pythagorean fuzzy maclaurin symmetric mean operators in multiple attribute decision making. IEEE Access, 99(1), (2018), 67866–67884, DOI: 10.1109/ACCESS.2018.2877725.
[23] K. Bai, X. Zhu, J. Wang, and R. Zhang: Some partitioned Maclaurin symmetric mean based on q-rung orthopair fuzzy information for dealing with multi-attribute group decision making. Symmetry, 10(9), (2018), 383, DOI: 10.3390/sym10090383.
[24] G. Wei and M. Lu: Pythagorean fuzzy Maclaurin symmetric mean operators in multiple attribute decision making. International Journal of Intelligent Systems, 33(6), (2017), 1043–1070, DOI: 10.1002/int.21911.
[25] J. Qin: Generalized Pythagorean fuzzy Maclaurin symmetric means and its application to multiple attribute SIR group decision model. Journal of Intelligent and Fuzzy Systems, 20(1), (2017), 943–957, DOI: 10.1007/s40815- 017-0439-2.
[26] P. Liu, and X. Qin: Maclaurin symmetric mean operators of linguistic intuitionistic fuzzy numbers and their application to multiple-attribute decisionmaking. Journal of Experimental & Theoretical Artificial Intelligence, 29(6), (2017), 1–30, DOI: 10.1080/0952813X.2017.1310309.
[27] H. Wang, P. Liu, and Z. Liu: Trapezoidal interval type-2 fuzzy Maclaurin symmetric mean operators and their applications to multiple attribute group decision making. International Journal for Uncertainty Quantification, 8(44), (2018), 343–360, DOI: 10.1615/Int.J.UncertaintyQuantification.2018020768.
[28] H. Garg: Hesitant Pythagorean fuzzy Maclaurin symmetric mean operators and its applications to multiattribute decision-making process. International Journal of Intelligent Systems, 34(4), (2019), 601–626, DOI: 10.1002/int.22067.
[29] K.T. Atanassov and G. Gargov: Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31, (1989), 343–349, DOI: 10.1016/0165-0114(89)90205-4.
[30] H. Garg: A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multicriteria decision making problem. Journal of Intelligent and Fuzzy Systems, 31(1), (2016), 529–540, DOI: 10.3233/IFS-162165.
[31] B.P. Joshi, A. Singh, P.K. Bhatt, and K.S. Vaisla: Interval valued q-rung orthopair fuzzy sets and their properties. Journal of Intelligent and Fuzzy Systems, 35(5), (2018), 5225–5230, DOI: 10.3233/JIFS-169806.
[32] H. Kalani, M. Akbarzadeh, A. Akbarzadeh, and I. Kardan: Intervalvalued fuzzy derivatives and solution to interval-valued fuzzy differential equations. Journal of Intelligent and Fuzzy Systems, 30(6), (2016), 3373– 3384, DOI: 10.3233/IFS-162085.
[33] T. Chen: An interval-valued Pythagorean fuzzy outranking method with a closeness-based assignment model for multiple criteria decision making. International Journal of Intelligent Systems, 33(2), (2017), 126–168, DOI: 10.1002/int.21943.
[34] Z. Li, G. Wei, and H. Gao: Methods for multiple attribute decision making with interval-valued Pythagorean fuzzy information. Mathematics, 6, (2018), 228, DOI: 10.3390/math6110228.
[35] N. Jan, T. Mahmood, L. Zedam, K.Ullah, J.C. Alcantud, and B.Davvaz: Analysis of social networks, communication networks and shortest path problems in the environment of interval valued q-rung orthopair fuzzy information. Journal of Intelligent and Fuzzy Systems, 21, (2019), 1687– 1708, DOI: 10.1007/s40815-019-00643-9.
[36] H. Gao, Y. Ju, W. Zhang, and D. Ju: Multi-attribute decision-making method based on interval-valued q-rung orthopair fuzzy archimedean Muirhead mean operators. IEEE Access, 99(1), (2019), 74300–74315, DOI: 10.1109/ACCESS.2019.2918779.
[37] V. Torra: Hesitant fuzzy sets. International Journal of Intelligent Systems, 25(6), (2010), 529–539, DOI: 10.1002/int.20418.
[38] B. Zhu, Z. Xu, and M. Xia: Dual hesitant fuzzy sets. Journal of Applied Mathematics, 2012, (2012), 1–13, DOI: 10.1155/2012/879629.
[39] D. Yu, W. Zhang, and G.Q. Huang: Dual hesitant fuzzy aggregation operators. textitTechnological and Economic Development of Economy, 22(2), (2015), 1–16, DOI: 10.3846/20294913.2015.1012657.
[40] Y. Xing, R. Zhang, M. Xia, and J. Wang: Generalized point aggregation operators for dual hesitant fuzzy information. Journal of Intelligent and Fuzzy Systems, 33(1), (2017), 515–527, DOI: 10.3233/JIFS-161922.
[41] Z. Su, Z. Xu, H. Zhao, and S. Liu: Distribution-based approaches to deriving weights from dual hesitant fuzzy information. Symmetry, 11(1), (2019), 85, DOI: 10.3390/sym11010085.
[42] G. Maity, D. Mardanya, S.K. Roy, and G.W. Weber: A new approach for solving dual-hesitant fuzzy transportation problem with restrictions, S¯adhan¯a, 44(75), (2019), DOI: 10.1007/s12046-018-1045-1.
[43] G. Qu, Q. An, W. Qu, F. Deng, and T. Li: Multiple attribute decision making based on bidirectional projection measures of dual hesitant fuzzy set. Journal of Intelligent and Fuzzy Systems, 7(5), (2019), 7087–7102, DOI: 10.3233/JIFS-181970.
[44] Y. Xu, X. Shang, J.Wang, H. Zhao, R. Zhang, and K. Bai: Some intervalvalued q-rung dual hesitant fuzzy Muirhead mean operators with their application to multi-attribute decision-making. IEEE Access, 99(1), (2019), 54724–54745, DOI: 10.1109/ACCESS.2019.2912814.
[45] T. Zhu, L. Luo, H. Liao, X. Zhang, and W. Shen: A hybrid multicriteria decision making model for elective admission control in a Chinese public hospital. Knowledge-Based Systems, 173, (2019), 37–51, DOI: 10.1016/j.knosys.2019.02.020.
[46] X. Gou, Z. Xu, H. Liao, and F. Herrera: Multiple criteria decision making based on distance and similarity measures under double hierarchy hesitant fuzzy linguistic environment. Computers & Industrial Engineering, 126, (2018), 516–530, DOI: 10.1016/j.cie.2018.10.020.
[47] Y. Xu, X. Shang, J. Wang, W. Wu, and H. Huang: Some q-rung dual hesitant fuzzy Heronian mean operators with their application to multiple attribute group decision-making. Symmetry, 10(10), (2018), 472, DOI: 10.3390/sym10100472.
[48] Y. Ju, X. Liu, and S. Yang: Interval-valued dual hesitant fuzzy aggregation operators and their applications to multiple attribute decision making. Journal of Intelligent and Fuzzy Systems, 27(3), (2014), 1203–1218, DOI: 10.3233/IFS-131085.
[49] W. Yang and Y. Pang: Hesitant interval-valued Pythagorean fuzzy VIKOR method. International Journal of Intelligent Systems, 34(5), (2018), 754– 789, DOI: 10.1002/int.22075.
[50] H. Hiidenhovi, P. Laippala, and K. Nojonen: Development of a patientorientated instrument to measure service quality in outpatient departments. Journal of Advanced Nursing, 34(5), (2001), 696–705, DOI: 10.1046/j.1365-2648.2001.01799.x.
[51] L. Li and W. Benton: Hospital capacity management decisions: Emphasis on cost control and quality enhancement. European Journal of Operational Research, 146(3), (2003), 596–614, DOI: 10.1016/S0377-2217(02)00225-4.
[52] C. Tian, Y. Tian, and L. Zhang: An evaluation scale of medical services quality based on “patients’ experience”. Journal of Huazhong University of Science and Technology [Medical Sciences], 34, (2014), 289–297, DOI: 10.1007/s11596-014-1273-5.
[53] S. Das, B. Dutta, and De. Guha: Weight computation of criteria in a decision-making problem by knowledge measure with intuitionistic fuzzy set and interval-valued intuitionistic fuzzy set. Soft Computing, 20(9), (2016), 3421–3442, DOI: 10.1007/s00500-015-1813-3.
[54] W. Zhang, X. Li, and Y. Ju: Some aggregation operators based on Einstein operations under interval-valued dual hesitant fuzzy setting and their application. Mathematical Problems in Engineering, 1, (2014), DOI: 10.1155/2014/958927.
[55] K. Rahman, S. Abdullah, M. Shakeel, M.S. Khan, and M. Ullah: Interval-valued Pythagorean fuzzy geometric aggregation operators and their application to group decision making problem. Cogent Mathematics, 4, (2017), DOI: 10.1080/23311835.2017.1338638.
[56] Y. Zang, X. Zhao, and S. Li: Interval-valued dual hesitant fuzzy Heronian mean aggregation operators and their application to multi-attribute decision making, International Journal of Computational Intelligence and Applications, 17(4), (2018), DOI: 10.1142/S1469026818500050.
[57] J. Wang, X. Shang, X. Feng, and M. Sun: A novel multiple attribute decision making method based on q-rung dual hesitant uncertain linguistic sets and Muirhead mean. Archives of Control Sciences, 30(2), (2020), 233– 272, DOI: 10.24425/acs.2020.133499.
[58] L. Li, R. Zhang, J. Wang, and X. Shang: Some q-orthopair linguistic Heronian mean operators with their application to multi-attribute group decision making. Archives of Control Sciences, 28(4), (2018), 551–583, DOI: 10.24425/acs.2018.125483.
[59] A. Biswas and A. Sarkar: Development of dual hesitant fuzzy prioritized operators based on Einstein operations with their application to multicriteria group decision making. Archives of Control Sciences, 28(4), (2018), 527–549, DOI: 10.24425/acs.2018.125482.
Go to article

Authors and Affiliations

Butian Zhao
1
Runtong Zhang
1
Yuping Xing
2

  1. School of Management and Economic, Beijing Jiaotong University, Beijing, 100044, China
  2. Glorious Sun School of Business and Management, DongHua University, Shanghai, 200051, China
Download PDF Download RIS Download Bibtex

Abstract

The ability of q-rung dual hesitant fuzzy sets (q-RDHFSs) in dealing with decision makers’ fuzzy evaluation information has received much attention. This main aim of this paper is to propose new aggregation operators of q-rung dual hesitant fuzzy elements and employ them in multi-attribute decision making (MADM). In order to do this, we first propose the power dual Maclaurin symmetric mean (PDMSM) operator by integrating the power geometric (PG) operator and the dual Maclaurin symmetric mean (DMSM). The PG operator can reduce or eliminate the negative influence of decision makers’ extreme evaluation values, making the final decision results more reasonable. The DMSM captures the interrelationship among multiple attributes. The PDMSM takes the advantages of both PG and DMSM and hence it is suitable and powerful to fuse decision information. Further, we extend the PDMSM operator to q-RDHFSs and propose q-rung dual hesitant fuzzy PDMSM operator and its weighted form. Properties of these operators are investigated. Afterwards, a new MADM method under q-RDHFSs is proposed on the basis on the new operators. Finally, the effectiveness of the new method is testified through numerical examples.
Go to article

Authors and Affiliations

Li Li
1
Jun Wang
2
ORCID: ORCID
Chunliang Ji
3

  1. School of Economics and Management, Beihang University, Beijing 100191, China
  2. School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China
  3. School of Economics and Management, Beijing Jiaotong University, Beijing100044, China

This page uses 'cookies'. Learn more