Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The pressure drop in microreactors for the gas - liquid Taylor flow was measured for 4 different microreactor geometries and 3 different gas - liquid systems. The results have been compared with the existing literature correlations. A selection of the best correlations has been made.

Go to article

Authors and Affiliations

Paweł Cygański
Paweł Sobieszuk
Ryszard Pohorecki
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of research regarding measurements of the values of pressure drops during horizontal flow of gas-liquid and gas-liquid-liquid mixture through 180o pipe bends. The conducted insightful analysis and assessment during multi-phase flow in pipe bends has enabled to develop a new method for determination of their values. This new method for determining pressure drops ensures higher precision of calculation in comparison to other methods presented in literature and can be applied for calculation of these parameters during multi-phase flows in pipe bends with various geometries.

Go to article

Authors and Affiliations

Stanisław Witczak
Marcin Pietrzak
Download PDF Download RIS Download Bibtex

Abstract

The main topic of this study is the mathematical modelling of bubble size distributions in an aerated stirred tank using the population balance method. The air-water system consisted of a fully baffled vessel with a diameter of 0.29 m, which was equipped with a six-bladed Rushton turbine. The secondary phase was introduced through a ring sparger situated under the impeller. Calculations were performed with the CFD software CFX 14.5. The turbulent quantities were predicted using the standard k-ε turbulence model. Coalescence and breakup of bubbles were modelled using the MUSIG method with 24 bubble size groups. For the bubble size distribution modelling, the breakup model by Luo and Svendsen (1996) typically has been used in the past. However, this breakup model was thoroughly reviewed and its practical applicability was questioned. Therefore, three different breakup models by Martínez-Bazán et al. (1999a, b), Lehr et al. (2002) and Alopaeus et al. (2002) were implemented in the CFD solver and applied to the system. The resulting Sauter mean diameters and local bubble size distributions were compared with experimental data.

Go to article

Authors and Affiliations

Zbyněk Kálal
Milan Jahoda
Ivan Fořt
Download PDF Download RIS Download Bibtex

Abstract

The main topic of this study is the experimental measurement and mathematical modelling of global gas hold-up and bubble size distribution in an aerated stirred vessel using the population balance method. The air-water system consisted of a mixing tank of diameter T = 0.29 m, which was equipped with a six-bladed Rushton turbine. Calculations were performed with CFD software CFX 14.5. Turbulent quantities were predicted using the standard k-ε turbulence model. Coalescence and breakup of bubbles were modelled using the homogeneous MUSIG method with 24 bubble size groups. To achieve a better prediction of the turbulent quantities, simulations were performed with much finer meshes than those that have been adopted so far for bubble size distribution modelling. Several different drag coefficient correlations were implemented in the solver, and their influence on the results was studied. Turbulent drag correction to reduce the bubble slip velocity proved to be essential to achieve agreement of the simulated gas distribution with experiments. To model the disintegration of bubbles, the widely adopted breakup model by Luo & Svendsen was used. However, its applicability was questioned.

Go to article

Authors and Affiliations

Zbyněk Kálal
Milan Jahoda
Ivan Fořt
Download PDF Download RIS Download Bibtex

Abstract

In order to clarify the action law of the swirl oxygen lance jet on the melt pool of the converter and to determine the optimal swirl angle of the swirl oxygen lance for the 120t converter, this study establishes the gas-liquid two-phase flow model of the oxygen lance with different swirl angles based on the realizable k-ε model and the VOF multiphase flow model. The gas-liquid interface behavior during the interaction between the jet and the molten pool was analyzed, and the flow pattern of molten steel in the molten pool was mainly investigated. The results show that compared with traditional oxygen lance, the rotating oxygen lance jet enhances the stirring of the melt pool and intensifies the fluctuation of the melt pool liquid level. The depth of the impact cavity decreases with the increase of the swirl angle, but the diameter of the impact cavity increases with the increase of the swirl angle. When the jet with a swirl angle of 10 ° impacts the surface of the melt pool, the turbulence energy obtained by the molten steel is the highest, the average flow velocity inside the melt pool is the highest, and the molten steel is stirred more thoroughly, achieving better melting effects.
Go to article

Bibliography

[1] Rao, J.P., Li, G.Q., & Yang, Z.Z. (2011). Research and application of new oxygen lance for BOF steelmaking. Advanced Materials Research. 335, 74-79. https://doi.org/10.4028/www.scientific.net/AMR.335-336.74.
[2] Allemand, B., Bruchet P. & Champinot, C. (2001). Theoretical and experimental study of supersonic oxygen jets. Industrial application in EAF. Metallurgical Research & Technology. 98(6), 571-587. https://doi.org/10.1051/ metal:2001107.
[3] Li, L., Li, M. & Shao, L. (2020). Physical and mathematical modeling of swirling gas jets impinging onto a liquid bath using a novel nozzles‐twisted lance. Steel Research International. 91(7), 54-60. https://doi.org/10.1002/ srin.201900684.
[4] Wang, X. (2022). Numerical simulation of jet characteristics and gas liquid two phase behavior of swirling oxygen lance. University of Science and Technology Liaoning. https://doi.org/10.26923/d.cnki.gasgc.2021.000081.
[5] Higuchi, Y. & Tago, Y. (2003). Effect of nozzle twisted lance on jet behavior and spitting rate in top blown process. ISIJ international. 43(9), 1410-1414. https://doi.org/10.2355 /isijinternational.43.1410.
[6] Li, M., Li, Q. & Kuang, S. (2016). Computational investigation of the splashing phenomenon induced by the impingement of multiple supersonic jets onto a molten slag–metal melt pool. Industrial & Engineering Chemistry Research. 55(12), 3630-3640. https://doi.org/10.1021/ acs.iecr.5b03301.
[7] Li, Q., Li, M. & Kuang, S, B. (2014). Computational study on the behaviours of supersonic jets and their impingement onto molten liquid free surface in BOF steelmaking. Canadian Metallurgical Quarterly. 53(3), 340-351. https://doi.org/10.1179/1879139514Y.0000000124.
[8] Li, M., Li, Q. & Zou Z. (2017). Computational investigation of swirling supersonic jets generated through a nozzle-twisted lance. Metallurgical and Materials Transactions B. 48, 713-725. https://doi.org/10.1007/s11663-016-0851-2.
[9] Muñoz-Esparza, D., Buchlin, J.M. & Myrillas, K. (2012). Numerical investigation of impinging gas jets onto deformable liquid layers. Applied Mathematical Modelling. 36(6), 2687-2700. https://doi.org/10.1016/j.apm.2011.09.052.
[10] Zhou, X., Ersson, M. & Zhong, L. (2014). Mathematical and physical simulation of a top blown converter. Steel research international. 85(2), 273-281. https://doi.org/10.1002/ srin.201300310.
[11] Hu, S., Zhu, R., & Dong, K. (2018). Effect of oxygen flow rate and temperature on supersonic jet characteristics and fluid flow in an EAF molten bath. Canadian Metallurgical Quarterly. 57(2), 219-234. https://doi.org/10.1080/00084433. 2017.1409945.
[12] Wang, W., Yuan, Z., & Matsuura, H. (2010). Three-dimensional compressible flow simulation of top-blown multiple jets in converter. ISIJ International. 50(4), 491-500. https://doi.org/10.2355/isijinternational.50.491.
[13] Li, M., Li, L. & Zhang, B. (2020). Numerical analysis of the particle-induced effect on gas flow in a supersonic powder-laden oxygen jet. Metallurgical and Materials Transactions B. 51, 1718-1730. https://doi.org/10.1007/s11663-020-01855-3.
[14] Feng, C., Zhu, R. & Dong, K. (2021). Effects of ambient temperature and powder gas ratio on jet characteristics of O2+ CO2 and CaO particles injected by a swirl-type oxygen lance nozzle. Powder Technology. 388, 537-553. https://doi.org/10.1016/j.powtec.2021.04.085.
[15] Lv, M., Zhu, R. & Wang H. (2013). Simulation and application of swirl-type oxygen lance in vanadium extraction converter. Steel Research International. 84(3), 304-312. https://doi.org/10.1002/srin.201200136.
[16] Lv, M., Zhu, R. & Guo, Y.G. (2013). Simulation of flowfluid in the BOF steelmaking process. Metallurgical and Materials Transactions B. 44, 1560-1571. https://doi.org/10.1007/ s11663-013-9935-4.
[17] Alam, M., Naser, J., & Brooks, G. (2010). Computational fluid dynamics simulation of supersonic oxygen jet behavior at steelmaking temperature. Metallurgical and Materials Transactions B. 41, 636-645. https://doi.org/10.1007/s11663-010-9341-0.
[18] Liu, F., Sun, D. & Zhu, R. (2017). Effect of nozzle twisted oxygen lance on flow field and dephosphorization rate in converter steelmaking process. Ironmaking & Steelmaking. 44(9), 640-648. https://doi.org/10.1080/03019233. 2016.1226562.
[19] Zhong, L., Zhu, Y. & Jiang, M. (2005). Cold modelling of slag splashing in LD furnace by oxygen lance with twisted nozzle tip. Steel Research International. 76(9), 611-615. https://doi.org/10.1002/srin.200506065.
[20] Liu, G., Liu, K., & Han, P. (2021). Splash sheet characteristics induced by the impingement of multiple jets in a steelmaking converter. Ironmaking & Steelmaking. 48(1), 25-32. https://doi.org/10.1080/03019233.2020.1720453.
Go to article

Authors and Affiliations

Haoran Ma
1
Guangqiang Liu
2
Chengcheng Xu
3
Kun Liu
1
ORCID: ORCID
Peng Han
1

  1. College of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 3114051, China
  2. College of Civil Engineering, University of Science and Technology Liaoning, Anshan 114051, China
  3. Cold rolling mill plant, ANGANG Steel Company Limited, Anshan 114021, China
Download PDF Download RIS Download Bibtex

Abstract

Gas-liquid flows abound in a great variety of industrial processes. Correct recognition of the regimes of a gasliquid flow is one of the most formidable challenges in multiphase flow measurement. Here we put forward a novel approach to the classification of gas-liquid flow patterns. In this method a flow-pattern map is constructed based on the average energy of intrinsic mode function and the volumetric void fraction of gas-liquid mixture. The intrinsic mode function is extracted from the pressure fluctuation across a bluff body using the empirical mode decomposition technique. Experiments adopting air and water as the working fluids are conducted in the bubble, plug, slug, and annular flow patterns at ambient temperature and atmospheric pressure. Verification tests indicate that the identification rate of the flow-pattern map developed exceeds 90%. This approach is appropriate for the gas-liquid flow pattern identification in practical applications.

Go to article

Authors and Affiliations

Sun Zhiqiang
Gong Hui
Download PDF Download RIS Download Bibtex

Abstract

To find effective and practical methods to distinguish gas-liquid two-phase flow patterns, new flow pattern maps are established using the differential pressure through a classical Venturi tube. The differential pressure signal was first decomposed adaptively into a series of intrinsic mode functions (IMFs) by the ensemble empirical mode decomposition. Hilbert marginal spectra of the IMFs showed that the flow patterns are related to the amplitude of the pressure fluctuation. The cross-correlation method was employed to sift the characteristic IMF, and then the energy ratio of the characteristic IMF to the raw signal was proposed to construct flow pattern maps with the volumetric void fraction and with the two-phase Reynolds number, respectively. The identification rates of these two maps are verified to be 91.18% and 92.65%. This approach provides a cost-effective solution to the difficult problem of identifying gas-liquid flow patterns in the industrial field.

Go to article

Authors and Affiliations

Zhiqiang Sun
Luyang Chen
Fengyan Yao

This page uses 'cookies'. Learn more