Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper describes the development phases of a numerical-experimental integrated approach aimed at obtaining sufficiently accurate predictions of the noise field emitted by an external gear pump by means of some vibration measurements on its external casing. Harmonic response methods and vibroacoustic analyses were considered as the main tools of this methodology. FFT acceleration spectra were experimentally acquired only in some positions of a 8.5 cc/rev external gear pump casing for some working conditions and considered as external excitation boundary conditions for a FE quite simplified vibroacoustic model. The emitted noise field was computed considering the pump as a ‘black box’, without taking into account the complex dynamics of the gear tooth meshing process and the consequent fluid pressure and load distribution. Sound power tests, based on sound intensity measurements, as well as sound pressure measurements in some positions around the pump casing were performed for validation purposes. The comparisons between numerical and experimental results confirmed the potentiality of this approach in offering a good compromise between noise prediction accuracy and reduction of experimental and modelling requirements.
Go to article

Authors and Affiliations

Eleonora Carletti
Giuseppe Miccoli
Francesca Pedrielli
Giorgio Parise
Download PDF Download RIS Download Bibtex

Abstract

The paper shows the new method for noise reduction in external gear pumps based on the analysis of the pressure in inter teeth volumes. The simulation model and measurement results of pressure changes in the inter teeth volume has been presented. Based on simulation results an additional volume has been obtained, which is connected to the inter teeth volume (decompression filter volume). Due this additional volume the build down processes in the pump are longer and the pressure overdue in the inter teeth volumes are smaller. This leads to the reduction of the dynamical excitation forces inside the pump and noise, especially in the higher frequency rangeI.

Go to article

Authors and Affiliations

Wiesław Fiebig
Download PDF Download RIS Download Bibtex

Abstract

The flow-induced noise mechanism of a 5000 rpm high-speed gear pump is explored. On the basis of the CFD technology and the Lighthill acoustic analogy theory, a numerical model of the flow-induced noise of a high-speed gear pump is constructed, and the effect of oil suction pressure (0.1–0.2 MPa) on the internal flow field and flow-induced noise characteristics of the high-speed gear pump is investigated. To evaluate the accuracy of the numerical simulation, a noise testing platform for high-speed gear pumps was developed. Adding an oil replenishment groove to the high-speed gear pump suppresses its flow-induced noise. The results indicate that the discrete noise at the fundamental frequency and its harmonic frequency is the primary component of the flow-induced noise of the pump and that the oil-trapped area is the principal source of vibration. The overall sound pressure level of flow-induced noise in the inlet and outlet areas decreases with distance from the oil-trapped area, and the sound pressure level in the outlet area is greater than that in the inlet area. The oil replenishment groove may considerably minimize cavitation noise, enhance the oil absorption capacity, and reduce the outer field’s overall sound pressure level by 4–5 dB.
Go to article

Authors and Affiliations

Peng Zhan
1
Yan Qiang
1
Zhiyuan Jiang
1
Runxue Yang
1
Liejiang Wie
1

  1. Energy and Power Engineering College, Lanzhou University of Technology Qilihe District, Lanzhou, Gansu Province, P.R. China

This page uses 'cookies'. Learn more