Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the importance of small hydro power plants in the Polish power system and defines the legal conditions for the operation of small hydro power plants. The phenomena occurring in the hydrological system of small hydro power plants and their impact on the natural environment were analyzed. An analysis of phenomena occurring in the hydrological system and the activity of small hydro power plants that are operating on the Radunia River helped us identify relations between different types of power plants working in cascades and possibilities of power generation control in period of several days. The above-mentioned analysis has been used in the development of a mathematical model of a hydroelectric plant and cascades of hydroelectric plants. The numerical simulations carried out concerned both the self-operating power plant and a cascade of two identical objects of this type. There is a possibility for small hydro power plant to run as a base load power plant and during periods of high demand as well (peak demand or unexpected loss of generation in the power system). A single hydroelectric power plant can deal with varying peak load demands while adding a second stage increase those abilities. A cascade of reservoir hydropower plants has a much greater ability to store energy and give it back in time. In addition, the existence of a second power plant equipped with a surge reservoir allows for a significant reduction in the amplitude of flows in the river below the cascade, which will reduce the negative impact of the cascade on the environment.

Go to article

Authors and Affiliations

Dariusz Baczyński
Krzysztof Kosiński
Download PDF Download RIS Download Bibtex

Abstract

The current task explores automatic generation control knowledge under old-style circumstances for a triple-arena scheme. Sources in area-1 are thermal-solar thermal (ST); thermalgeothermal power plant (GPP) in area-2 and thermal-hydro in area-3. An original endeavour has been set out to execute a new performance index named hybrid peak area integral squared error (HPA-ISE) and two-stage controller with amalgamation of proportional-integral and fractional order proportional-derivative, hence named as PI(FOPD). The performance of PI(FOPD) has been compared with varied controllers like proportional-integral (PI), proportional-integralderivative (PID). Various investigation express excellency of PI(FOPD) controller over other controller from outlook regarding lessened level of peak anomalies and time duration for settling. Thus, PI(FOPD) controller’s excellent performance is stated when comparison is undergone for a three-area basic thermal system. The above said controller’s gains and related parameters are developed by the aid of Artificial Rabbit Optimization (ARO). Also, studies with HPA-ISE enhances system dynamics over ISE. Moreover, a study on various area capacity ratios (ACR) suggests that high ACR shows better dynamics. The basic thermal system is united with renewable sources ST in area-1 also GPP in area-2. Also, hydro unit is installed in area-3. The performance of this new combination of system is compared with the basic thermal system using PI(FOPD) controller. It is detected that dynamic presentation of new system is improved. Action in existence of redox flow battery is also examined which provides with noteworthy outcome. PI(FOPD) parameters values at nominal condition are appropriate for higher value of disturbance without need for optimization.
Go to article

Authors and Affiliations

Arindita Saha
1
Tirumalasetty Chiranjeevi
2
Ramesh Devarapalli
3
ORCID: ORCID
Naladi Ram Babu
4
Puja Dash
5
Fausto Pedro Garcìa Màrquez
6

  1. Department of Electrical Engineering, RegentEducation & Research Foundation Group of Institutions, Kolkata, West Bengal, India
  2. Department of ElectricalEngineering, Rajkiya Engineering College Sonbhadra, U.P., India
  3. Institute of Chemical Technology, IndianOil Odisha Campus, Bhubaneswar, India
  4. Department of Electrical & Electronics Engineering,Aditya Engineering College, Surampalem, Andhra Pradesh, India
  5. Department of Electrical and Electronics Engineering,Gayatri Vidya Parishad College of Engineering (Autonomous), Visakhapatnam, Andhra Pradesh,India
  6. Ingenium ResearchGroup, University of Castilla-La Mancha, Spain

This page uses 'cookies'. Learn more