Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The European standards, developed extensively over last 30 years, are driven by the need for continuous evolution and their Authors’ pursuit of better EU-wide quality in civil engineering – combining safety, economy, and sustainable development. The adoption of theory of reliability as the basis for design has played a major role in shaping current geotechnical practice. However, it requires from practitioners a greater understanding of underlying uncertainties. Furthermore, a number of alternative approaches, not generally used in structural design, are also allowed, as some situations in geotechnical engineering require an individual approach. Moreover, the current trends in geoengineering increase the importance of risk assessment and management. The paper presents general philosophy guiding the geotechnical design and pointing to some of the ideas introduced by Eurocode 7 and its requirements, in relation to preexisting practice of geotechnical design in civil engineering.

Go to article

Authors and Affiliations

W. Bogusz
T. Godlewski
Download PDF Download RIS Download Bibtex

Abstract

Plastic rocks can creep, therefore the knowledge of the rheological properties of the drilled formations is an important element of the drilling process and when choosing borehole designs. These properties of plastic formations also influence the way in which appropriate drilling technology and drilling mud properties are selected. The article presents the effect of basic rheological parameters of salt from the Fore-Sudetic Monocline deposit on the drilling of boreholes in the mining area of KGHM Polska Miedź, which in the future can be used as a good drilling practice to improve the safety and efficiency of drilling.

The process of drilling in plastic rocks may be hindered. Salt is a plastic rock and in the analyzed rock mass it is deposited at a considerable depth. The caprock exerts big loads on it, beside the temperature in the deposit intensifies the rheological properties of the rock. The creep process causes that the borehole contracts, therefore the knowledge about the rheological properties of the drilled rock is very important for establishing the safe time in which the well may remain uncased. The paper is devoted to the influence of basic rheological parameters of salt bed in the Fore-Sudetic Monocline on the process of drilling of a borehole in the area of KGHM Polska Miedź as these data can be used in drilling practice in the future.

Go to article

Authors and Affiliations

Dagmara Zeljaś
Robert Rado
Iwona Kowalska-Kubsik
Tomasz Śliwa
Aleksandra Jamrozik
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an experimental study on the leaching of heavy metals, toxic chemicals and persistent organic pollutants (POPs) – PAH, PCB and HCB – from soil dredged from the coastal area of Västernorrland in northern Sweden. The soil was stabilized with cement/slag. Samples were subjected to modified surface leaching and shake tests using technical standards of the Swedish Geotechnical Institute (SGI). The experiments were performed using different blends of binding agents (30/70, 50/50, 70/30) and binder quantities (120 and 150 kg/m3) to analyze their effects on leaching. Soil properties, tools, and workflow are described. Binders included Portland cement and ground granulated blast furnace slag (GGBFS). Samples were tested to evaluate the min/max contents of pollutants (μg/l) for heavy metals (As, Ba, Pb, Cd, Co, Cu, Cr, Hg, Mn, Mo, Ni, S, V, Zn) and the hydrocarbon fraction index in the excess water. The leaching of heavy metals and POPs was assessed in sediments after the addition of the binder. The comparison was made against the two mixes (cement/slag in 30/70% and high/low binder with low/high water ratio). The results showed that 70% slag decreases the leaching of heavy metals and POPs. The equilibrium concentrations of DOC and heavy metals at L/S 10 (μg/l) were measured during the shake experiments to compare their levels in the groundwater that was used as a leachate. The leached content was assessed at L/S 10 in the upscaling experiments using four samples for PAH, PCB and various fractions of hydrocarbons: C10–C40, C10–C12, C12–C16 and C35–C40. The shake test showed a decrease in the leaching of heavy metals and POP substances from the soil subjected to stabilization by a higher amount of slag added as a binder. A binder blend with 30% cement and 70% of GGBFS showed the best performance.
Go to article

Authors and Affiliations

Per Lindh
1 2
ORCID: ORCID
Polina Lemenkova
3
ORCID: ORCID

  1. Swedish Transport Administration, Malmö, Sweden
  2. Lund University, Lund, Sweden
  3. Université Libre de Bruxelles, Brussels, Belgium
Download PDF Download RIS Download Bibtex

Abstract

The demands placed on industry today are increasingly challenging and demanding. To meet these challenges, designers, contractors, and technology managers are constantly looking for effective solutions. Industry has always thrived on new technologies and innovations to achieve better results, so it is critical to undertake new developmental research to simulate and test new technological proposals. In this paper, the author describes a new direction in civil engineering technology that interdisciplinary couples solutions known to the bridge industry with geotechnical aspects in the technology space and the possibility of implementation in the construction industry. The author proposes the application of prestressing together with technological aspects of this solution to diaphragm walls, which are not only a temporary housing but also the foundations of a new investment. Thanks to this solution it is possible, among other things, to resign from one level of diaphragm expansion of diaphragm walls, which translates into cost optimization. It is an innovative approach to designing and most of all constructing the load-bearing structure, which directly influences the technological optimization of selected issues of completing the underground parts of the investment. Additionally, the presented solution contributes to the balanced execution of the investment by reducing the use of materials and construction equipment. The author discusses technological, execution and implementation problems related to the application of innovative solutions in construction companies together with examples of cost optimization. The author presents the results of conducted research with application of the proposed solution in the implementation of the underground commercial investment.
Go to article

Authors and Affiliations

Mateusz Frydrych
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article presents results of the numerical analysis of the interaction between heavy caterpillar tracks system and subsoil. The main goal of the article is to present an algorithm to design working platforms - temporary structures enabling the work of heavy construction equipment on weak subsoils. A semi-analytical method is based on the results of the numerical analysis performed with use of the finite element method (FE software ZSoil.PC [12]). The calculations were carried out for the piling rig machine - Bauer BH20H (BT60). Three ground models were adopted: Model 1: one layer - weak cohesive soil (clay); Model 2: two layers: weak cohesive soil (clay) and cohesionless working platform (medium sand); Model 3: one layer: strong cohesionless subsoil (medium sand). The following problems were solved: I) entry of the machine on the ground with various geotechnical parameters under each caterpillar tracks II) detection of the maximum permissible angle of ground slope.

Go to article

Authors and Affiliations

A. Urbański
M. Richter
Download PDF Download RIS Download Bibtex

Abstract

The dynamic replacement columns are formed by driving a coarse-grained material into a soft soil by means of repeatable drops of a pounder. The final shapes of the columns are non-cylindrical and depend on the subsoil conditions. This paper presents results of the laboratory study on influence of the thickness of the soft soil on the displacements of the backfill aggregate during the driving process. A test box with one acrylic-glass wall was prepared, in which, over a load-bearing sand layer, a soft soil of various thicknesses (���� = 0.3, 0.4 or 0.5 m) was modelled using a semi-transparent acrylic polymer. The displacements of the backfill gravel particles were tracked by means of a high-speed camera. The material was driven by dropping a 0.2 m high (����) pounder. The results revealed that the distance between the bottom of the first crater and the top of the sand layer played an important role in directing the particles. At ����/���� = 2.5 pear-shaped floating columns were formed as the grains in the side zones were less affected by the pounder drops and their paths deviated from the vertical axis by not more than 50°. In case of ����/���� = 2.0 and 1.5, the column bases reached the bearing layer and the impact energy caused much larger vertical and horizontal displacements of the backfill material in the side zones – the observed largest angles were equal to 64° and even 90°, respectively. Eventually, the final column shapes resembled a non-symmetrical barrel and a truncated cone.
Go to article

Authors and Affiliations

Sławomir Kwiecień
1
ORCID: ORCID
Siergey Ihnatov
1
ORCID: ORCID
Magdalena Kowalska
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Civil Engineering, ul. Akademicka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the authors present an extension of the scope of the previously conducted research to the full three-dimensional computer simulation (using the finite element method), which takes into account the interaction between: heavy caterpillar tracks system – working platform – weak subsoil. The article presents a computer model considering two caterpillars, resting on elastic-plastic sub-soil, with standard Mohr-Coulomb yield conditions, allowing for computer simulation of the behavior of the system up to achievement of ultimate limit state. The results of the above model are treated as the reference for a simplified Analytical Models of estimating the limit state, which might be used in design procedures. In turn, these Analytical Models are enhancements of previously presented one. The most important results concluding form the Analytical Model are simple interaction formulas, in the space of moments acting on the machine-subsoil system, limiting a domain of safety in given soil conditions.
Go to article

Authors and Affiliations

Aleksander Urbański
1
ORCID: ORCID
Mateusz Richter
2
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Environmental Engineering and Energy, ul. Warszawska 24, 31-155 Krakow, Poland
  2. University of Agriculture in Krakow, Department of Rural Building, Al. Mickiewicza 24/28, 59-130 Krakow, Poland

This page uses 'cookies'. Learn more