Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The current climate warming results in a quick recession of glaciers on the northern slopes and valleys of the Lindströmfjellet-Hĺbergnuten mountain ridge in Nordenskiöld Land. The equilibrium line altitude has risen from c. 500-550 m in 1936 to c.750 m in 2001 and c. 800 m in 2006. The slopes, almost completely glaciated during the Little Ice Age, and even in 1936, have mostly been abandoned by glaciers afterwards. The upper parts of the glaciers undergo a clear retreat diminishing their accumulative (firn) fields. The lower parts of the active glacial tongues have been transformed into marginal zones built of dead ice covered with morainic and glacifluvial deposits. The surfaces of the marginal zones are progressively lowered due to ablation of dead ice. The state of the described glaciers is not balanced under the current climatic conditions. Thus, the landscape transformation of the mountain ridge will most certainly continue.

Go to article

Authors and Affiliations

Wiesław Ziaja
Robert Pipała
Download PDF Download RIS Download Bibtex

Abstract

Although much has been written about a cosmic impact event in the Western Alps of the Mt. Viso area, the event closely tied with the Younger Dryas Boundary (YDB) of 12.8 ka and onset of the Younger Dryas (YD), the affected land surface is considered to contain a similar black mat suite of sediment found on three continents. While work elsewhere has focused on recovered sediment from lake and ice cores, buried lacustrine/alluvial records, and surface glacial and paraglacial records, no one has traced a mountain morphosequence of deposits with the objective of investigating initial weathering/ soil morphogenesis that occurred in ice recessional deposits up to the YDB when the surface was subjected to intense heat, presumably, as hypothesized by Mahaney et al. (2016a) from a cosmic airburst. With the land surface rapidly free of ice following glacial retreat during the Břlling-Allerřd interstadial, weathering processes ~13.5 to 12.8 ka led to weathering and soil morphogenesis in a slow progression as the land surface became free of ice. To determine the exposed land character in the mid- to late-Allerřd, it is possible to utilize an inverted stratigraphic soil morphogenesis working backward in time, from known post-Little Ice Age (LIA) (i.e. time-zero) through LIA (~0.45 to ~0.10 ka), to at least the middle Neoglacial (~2 ka), to answer several questions. What were the likely soil profile states in existence at the end of the Allerřd just prior to the cosmic impact/airburst (YDB)? Assuming these immature weathered regolith sections of the Late Allerřd approximated the <1 ka old profiles seen today, and assuming the land surface was subjected to a hypothesized instant temperature burst from ambient to ~2200oC at ~12.8 ka, what would be the expected effect on the resident sediment? To test the mid-LG (YDB) to YD relationship we analyzed the paleosols in both suites of deposits – mid-LG to YD – to test that the airburst grains are restricted to Late Allerřd paleosols and using relative-age-determination criteria, that the overlapping YD to mid-LG moraines are closely related in time. These are some of the questions about the black mat that we seek to answer with reference to sites in the upper Guil and Po rivers of the Mt. Viso area.
Go to article

Authors and Affiliations

William C. Mahaney
Allen West
Alison Milan
David H. Krinsley
Peeter Somelar
Stephane Schwartz
Michael W. Milner
Christopher C.R. Allen

This page uses 'cookies'. Learn more