Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 68
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Glass is a significant material in shaping contemporary architecture. Its main feature is transparency, which is related to the possibility of letting daylight into building interiors. Glass facades mark the almost invisible border between the interior and exterior space, which is a source of endless design inspiration. This situation is facilitated by the development of technology and knowledge on glass as a structural material.
The article aims to identify and analyse the possibility to apply structural glass in glazed facades. The paper analyses the technological and structural aspects of glass. The conducted analyses were based on the following methods: logical argumentation, comparative method, and case study. The analysis of selected architectural implementations provided a major contribution to the work results. Based on this, the typology and characteristics of design solutions were established for glass facades in which structural glass is used. The search for solutions aimed at shaping all-glass self-supporting structures was assumed as the main criterion of the indicated typology. It has been established that shaping all-glass self-supporting structures is achievable with the use of frameless systems, glass fins, folded plate glass systems, or facades with bent glass. By designing self-supporting systems, the elimination or reduction of support systems of other materials can be achieved. Thus, the use of structural glass in these structures allows for uniform material solutions. These solutions not only focus on technological and structural aspects but also have a significant impact on the architectural creation of the facade.
Go to article

Authors and Affiliations

Anna Jóźwik
1
ORCID: ORCID

  1. Warsaw University of Technology Faculty of Architecture
Download PDF Download RIS Download Bibtex

Abstract

The drainage consolidation method has been efficiently used to deal with soft ground improvement. Nowadays, it has been suggested to use a new sand soil which is a composite of sand and recycled glass waste. The permeability performance of glass-sand soil was explored to judge the feasibility of glass-sand soil backfilled in the drainage consolidation of sand-drained ground. For comparison purposes, different mix proportions of recycled glass waste, fineness modulus, and glass particle size were analyzed to certify the impact on the permeability coefficient and the degree of consolidation. The numerical results show that adding a proper amount of recycled glass waste could promote the permeability performance of glass-sand soil, and the glasssand soil drain could be consolidated more quickly than a sand drain. Experiments showed that glass-sand soil with the a 20% mix of recycled glass waste reveals the optimum performance of permeability.

Go to article

Authors and Affiliations

F.C. Wang
X.N. Feng
H. Gong
H.Y. Zhao
Download PDF Download RIS Download Bibtex

Abstract

The implementation of a new, high-performance float flat glass manufacturing technology in Europe, in conjunction with the growing interest in new glass functions expressed by the construction industry, has led to significant developments in the theory of glass structures. Long time research conducted in the EU countries has been concluded by the technical document CEN/TC 250 N 1060, drawn up as a part of the work of the European Committee for Standardization on the second edition of Eurocodes (EC). The recommendations pertaining to the design of glass structures have been foreseen in the second edition of the Eurocodes, in particular the development of a separate design standard containing modern procedures for static calculations and stability of glass building structures (cf. works M. Feldmann, R. Kasper, K. Langosch and other).

In this paper new static analysis methods for glass plates made of monolithic and laminated glass, declared in th document CEN/TC 250 N 1060 (2014) and recommended in the national standarization document CNR-DT 210 (National Research Council of Italy, 2013) are presented. These static analysis methods are not commonly known in our national engineering environment, and thus require popularization and regional verification. Numerical and analytical simulations presented in this paper for rectangular plates made of monolithic and laminated glass and having various support conditions are of this character. The results of numerical calculations constitute a basis for the discussion of new static analysis methods for plates.

Go to article

Authors and Affiliations

Marian Gwóźdź
ORCID: ORCID
Piotr Woźniczka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper focuses on the development of knowledge about the hot bending of curved architectural glass produced by the slumping process and the challenges as well as the limitations thereof. Due to the complexity of the process, many factors influence the final quality of the glass and the main objective was to better understand the procedure itself in order to improve the control and quality of the slumping process. As a result of the growing interest in this type of glass for architectural applications, the glass processing market is increasingly investing in the required technology. For the moment, this growing niche does not have a large number of direct explanations of the glass behaviour in the furnace in the available literature, which in turn encourages cooperation between the scientific community and manufacturers. This paper presents the conducted experiments that have led to a better understanding of the furnace's work and the impact of specific factors on its operation. Based on the 3D numerical model, a large sample of glass was produced, which was then scanned with a 3D laser using a method developed for the experiment. The results suggested that a more accurate test with usage of a full-size furnace is required. Based on this, the experiment was carried out using a large number of glass samples of different thicknesses. The results of the experiment helped to better understand and demonstrate the need for further research of this technology in order to optimize the quality of the process.

Go to article

Authors and Affiliations

Andrzej Malewski
Marcin Kozłowski
Wojciech Sumelka
Marek Połedniok
Download PDF Download RIS Download Bibtex

Abstract

The nanocomposites based on water glass matrix were attempted in the study. Nanoparticles of ZnO, Al2O3 or MgO in organic solutions

were applied into water glass matrix in the amounts of: 1.5; 3; 4 or 5 mas. %. Wettability of the quartz sad by the nanocomposites based on

water glass matrix was determined by testing changes of the wetting angle θ in time τ for the system: quartz – binder in non-stationary

state, by means of the device for measuring wetting angles. Wettability measurements were carried out under isothermal conditions at an

ambient temperature (20 – 25 oC). The modification improves wettability of quartz matrix by water glass, which is effective in improving

strength properties of hardened moulding sands. Out of the considered modifiers in colloidal solution of propyl alcohol water glass

modified by MgO nanoparticles indicated the smallest values of the equilibrium wetting angle θr. This value was equal app. 11 degrees and

was smaller no less than 40 degrees than θr value determined for not modified water glass. Viscosity η of nanocomposites based on water

glass matrix was determined from the flow curve, it means from the empirically determined dependence of the shearing stress τ on shear

rate γ: τ = f (γ) (1), by means of the rotational rheometer. Measurements were carried out at a constant temperature of 20 oC. The

modification influences the binder viscosity. This influence is conditioned by: amount of the introduced modifier as well as dimensions and

kinds of nanoparticles and organic solvents. The viscosity increase of the modified binder does not negatively influence its functional

properties.

Go to article

Authors and Affiliations

A. Kmita
A. Roczniak
Download PDF Download RIS Download Bibtex

Abstract

Presented are results of a research on usability of an innovative reclamation process of microwave-hardened moulding sands containing

water-glass, combined with activation of binder. After each subsequent stage of reclamation, quality of the reclaimed material was

determined on the grounds of measurements of permeability and results of screen analysis. The reclaimed material was next used again to

prepare new moulding sand. The sandmix based on high-silica sand prepared with water-glass grade 145, was subject to the following

cyclical treatment operations: mixing components, consolidation, microwave hardening, cooling, heating the mould up to 800 °C, cooling

to ambient temperature, mechanical reclamation dry and wet. It was found that the used-up and reclaimed sandmix containing water-glass

is susceptible to the applied activation process of thermally reacted film of binder and, in addition, it maintains good quality and

technological properties of high-silica base. Observations of surfaces of reclaimed high-silica grains with activated film of reacted

inorganic binder were carried-out using a scanning microscope. Thanks to properly selected reclamation parameters, the high-silica base

can be reused even five times, thus reducing demand for fresh aggregate and inorganic binder.

Go to article

Authors and Affiliations

M. Stachowicz
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

In the paper, an attempt was made to evaluate the effect of preliminary wetting of high-silica base during preparation of moulding sands

containing a selected grade of sodium water-glass, designed for hardening by traditional drying or by electromagnetic microwaves at 2.45

GHz. In the research, some water was dosed during stirring the sandmix before adding 1.5 wt% of the binder that was unmodified sodium

water-glass grade 137, characterised by high molar module within 3.2 to 3.4. Scope of the examinations included determining the effect of

wetting the base on mechanical parameters like compression, bending and tensile strength, as well as on technological parameters like

permeability, abrasion resistance and apparent density. The research revealed a significant positive effect of adding water to wet surfaces

of high-silica base grains on mechanical properties and quality of moulding sands hardened by physical methods, in particular by

microwave heating

Go to article

Authors and Affiliations

M. Stachowicz
K. Granat
Ł. Pałyga
Download PDF Download RIS Download Bibtex

Abstract

Abstract An attempt has been made to determine the effect of an addition of colloidal suspensions of the nanoparticles of magnesium oxide on the structure of water glass, which is a binder for moulding and core sands. Nanoparticles of magnesium oxide MgO in propanol and ethanol were introduced in the same mass content (5wt.%) and structural changes were determined by measurement of the FT-IR absorption spectra.
Go to article

Authors and Affiliations

A. Bobrowski
A. Kmita
M. Starowicz
B. Hutera
B. Stypuła
Download PDF Download RIS Download Bibtex

Abstract

The combined fractographic and simple stress analysis showed that there are several mechanisms responsible for a relatively high delamination resistance of laminates reinforced with fabrics. It was concluded that they result from yarn weaves and curvatures produced in the course of weaving.
Go to article

Authors and Affiliations

Piotr Czarnocki
Download PDF Download RIS Download Bibtex

Abstract

Bioactive glass (BG) can be utilized as a replacement and regeneration material for orthopaedic and orthodontic. However, a load-bearing structure requires good mechanical properties to withstand high stress, in addition to good bioactivity properties. In this research, BG and cordierite (BG-cord) composite was fabricated to improve BG’s mechanical properties. The mechanical strength of the BG-cord was investigated. Both BG and cordierite were synthesized separately using the glass melting method. The synthesized BG and cordierite powders were used to fabricate BG-cord using a composition variation from 10 to 50 wt.%. The composite with 30 wt.% cordierite demonstrated the highest diametral tensile strength (DTS), 14.01 MPa.
Go to article

Authors and Affiliations

Ahmad Fakhruddin Mohd Mokhtar Kamil
1
ORCID: ORCID
Hamisah Ismail
1
ORCID: ORCID
Mohamad Hasmaliza
1
ORCID: ORCID

  1. Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering,Biomaterial Research Niche Group, 14300 Nibong Tebal, Penang, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

Aluminum-glass partition systems are used as building facades but also as glazed internal walls designated to form various internal partitions with glass doors. These partitions are designated to create fire compartments as well as separate and soundproof the zones created, without visually limiting the built up area. System fireproof partitions manufactured in fire resistance classes EI 30 to EI 180 constitute an important product in the offer of domestic and foreign manufacturers in terms of fire safety. The internal and external fireproof partitions are generally designed conformant to deterministic criteria, i.e. the structure of the partition is determined by the formal requirements listed in the legal regulations pertaining to basic requirements which should be satisfied by buildings and their parts. The fireproofing qualities of system aluminum-glass partitions are controlled in laboratories and documented in technical approvals. Partitions designed according to the deterministic criteria may be verified by the fire reliability analysis of the designed structure using the known simple and complex models of the reliability theory. In this paper the reliability formulae for simple and mixed mathematical models of non-renewable objects, which have been applied to model the fire reliability of partitions made by Aluprof, a domestic maker of aluminum-glass systems, under catalog numbers MB-78EI and MB-118EI, have been juxtaposed. The results of calculations allowed for preparing design recommendations, verifying the deterministic criteria for design of fire resistant partitions. In particular the fire reliability analysis prompts for abandoning the design of expensive aluminum-glass partitions made of multi-layered glass having multiple fire resistant layers.
Go to article

Authors and Affiliations

Marian Gwóźdź
1
ORCID: ORCID

  1. University of Bielsko-Biala (ATH), Institute of Building Industry, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
Download PDF Download RIS Download Bibtex

Abstract

Taking into account the numerous previous attempts to use waste glass for concrete production, an approach was proposed based solely on car side window glass waste. Only side window waste emerging during the production of car side windows was used during the research program. In this way, all key properties of the waste glass were under control (purity, granulometric properties, etc.). Two types of concretes with crushed side window glass, playing the role of coarse aggregate, were created. Concretes were differentiated by the amount of added crushed side window glass, which replaced 10–50% of the natural aggregate. Created concretes were thoroughly tested in the state of both a fresh mix and hardened composite. Consistency and air content of fresh mixes were tested. Slump was ranging from 15 mm to 20 mm and air content was ranging from 2.5% to 3.1%. Hardened composites were used to test apparent density, compressive strength, water absorption, water-tightness and resistance to freeze–thaw cycles. It was proven that concrete with side window glass as partial aggregate substitution is characterized by satisfactory mechanical properties (compressive strength after 28 days of curing was ranging from 51.9 MPa to 54.7 MPa), enabling its application as ordinary structural concrete. Properties of both fresh concrete mixes and hardened concretes based on crushed side window glass are similar to a reference concrete. It was proved that it is possible to replace up to 50% of natural coarse aggregate by crushed side window glass. Possible applications of the concretes in question were proposed. Experience gained during the research program is likely to be useful for tests of using crushed side window glass sourced from decommissioned cars and trucks. Areas where future research is needed are indicated.
Go to article

Authors and Affiliations

Bogdan Langier
1
ORCID: ORCID
Jacek Katzer
2
ORCID: ORCID
Maciej Major
1
ORCID: ORCID
Jacek Halbiniak
1
ORCID: ORCID
Izabela Major
1
ORCID: ORCID

  1. Częstochowa University of Technology, Faculty of Civil Engineering, ul. Dąbrowskiego 69, 42-201 Częstochowa, Poland
  2. University ofWarmia and Mazury in Olsztyn, Faculty of Geoengineering, ul. Oczapowskiego 2,10-719 Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

Glass is a material commonly used in construction. The development of technology related to it, and the increase in knowledge concerning its mechanical and strength properties offer opportunities for glass to be applied as a structural material. The advancement in glass structures, methods for their design, as well as guidelines and standards in this fields are being developed in parallel. This article describes the main assumptions contained in the German TRxV guidelines, the series of German DIN 18008 standards, and the European EN 16612, and EN 16613 standard. Moreover, the following article presents the concept of structural glass design included in the draft pre-standard prCEN/TS 19100, which provides the basis for the formulation of the European standard Eurocode 10. According to this pre-standard, structural elements of glass will be verified in four limit states, depending on the Limit State Scenario (LSS). Apart from the classic limit states, i.e., the ultimate limit state (ULS), and the serviceability limit state (SLS), it is also assumed to introduce a fracture limit state (FLS), and postfracture limit state (PFLS). The article also addresses the issue of laminated glass working in structural elements. Depending on the coupling between the glass panes and the polymer or ionomer interlayers, laminated glass can be divided into complete coupled or uncoupled, and can work in intermediate situations. The methods for determining the effective thickness contained in European standards and guidelines are discussed in this article.
Go to article

Authors and Affiliations

Anna Jóźwik
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Architecture, Koszykowa Street 55, 00-659 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The durability characteristics of Engineered Cementitious Composites (ECC) with various fibers such as polypropylene and glass were investigated in view of developing composites with high resistance to cracking. ECC offer large potential for durable civil infrastructure due to their high tensile strain capacity and controlled micro-crack width. In this study, fibre volume fractions (0.5%, 1%, 1.5%, and 2%) of both polypropylene and glass fibers varied and durability measures such as a rapid chloride penetration test, sorptivity, water absorption, acid attack, and sulphate attack were measured. Increasing the fiber content up to 1.5% improved the durability properties of ECC. The test results indicate that the glass fiber-reinforced Engineered Cementitious Composites have better durability characteristics than polypropylene fiber-reinforced ECC.

Go to article

Authors and Affiliations

S. Ranjith
R. Venkatasubramani
V. Sreevidya
Download PDF Download RIS Download Bibtex

Abstract

In the paper, an attempt is made to explain the previously observed increased effectiveness of utilising hydrated sodium water-glass grade

137 after hardening moulding sands with selected physical methods. In the modified process of preparing sandmixes, during stirring

components, water as a wetting additive was introduced to the sand-binder system. Presented are examination results of influence of faster

microwave heating and slower traditional drying of the so-prepared moulding sands on their tensile and bending strength, calculated per

weight fraction of the binder. The measurement results were confronted with SEM observations of linking bridges and with chemical

analyses of grain surfaces of high-silica base. On the grounds of comprehensive evaluation of hardened moulding sands, positive effects

were found of the applied physical process of binder dehydration and presence of the wetting additive. It was observed that introduction of

this additive during stirring, before adding the binder, improves flowing the binder to the places where durable linking bridges are created.

It was also found that the applied methods of hardening by dehydration enable creation of very durable linking bridges, strongly connected

with the sand base, which results in damages of high-silica grain surfaces, when the bridges are destroyed.

Go to article

Authors and Affiliations

M. Stachowicz
K. Granat
Ł. Pałyga
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to determine the applicability of a new product added to water glass-containing foundry sands hardened with

ethylene glycol diacetate. The new additive designated by the symbol "B" is a composition of aqueous solutions of modified polyalcohols,

improving the sand knocking out properties. The scope of studies included testing various mechanical and technological properties

of foundry sand mixtures, such as permeability, friability, life cycle of cores and knocking out properties.

In the technological studies, two types of water glass with different values of the silica modulus and density, designated as R145 and R150,

were used. Moulding sands were prepared with the additive "B". For comparison, reference sands with water glass but without the additive

"B" were also made. In Part I of the article, the results of studies of the effect of additive "B" on the properties of foundry sands with water

glass hardened by CO2 blowing were discussed.

Go to article

Authors and Affiliations

I. Izdebska-Szanda
J. Kamińska
M. Angrecki
Z. Stefański
A. Palma
Download PDF Download RIS Download Bibtex

Abstract

The article takes into consideration the researches concerning inserting the Glassex additive to the microwaved-hardened and selfhardened moulding sands with water glass. In the research different types of ester hardeners to self-hardened moulding sands with water glass were used. The influence of Glassex additive on retained strength of moulding sands with different hardeners and prepared by different technologies of hardening were tested. The influence of different hardeners and the technology of hardening on retained strength of moulding sand with water glass and the Glassex additive were also estimated.

Go to article

Authors and Affiliations

J. Jakubski
K. Major-Gabryś
M. Stachowicz
St.M. Dobosz
D. Nowak
Download PDF Download RIS Download Bibtex

Abstract

A liquid crystal display (LCD) recycling process is needed to increase its efficiency by recovering the resources in addition to metals and plastics. This study investigates the pre-treatment process for recycling LCD glass. Recycling pre-treatment includes dismantling the LCD from the waste product, crushing the glass, and separating the glass particles from the impurities. Scanning electron microscopy confirmed that the oscillation milling process is more effective in maintaining uniform powder shape and size as compared to the cut milling process. The glass particles crushed by the oscillating mill, optimized at 1500 rpm, had a uniformly distributed particle size of less than 10 µm. These small particles were separated from the organic impurities, achieving a 98% pure powder that can be used as recycled raw materials. The proposed pre-treatment process for recycling LCD glass will enhance the ability to use waste glass as a valuable resource in the manufacturing of future displays.

Go to article

Authors and Affiliations

Seyul Kim
Yubin Kang
Leeseung Kang
Hyun Seon Hong
Chan Gi Lee
Download PDF Download RIS Download Bibtex

Abstract

This paper is focused on the manufacturing and properties of light weight aggregates made from local waste materials. The waste materials were car windshield glass contaminated by PVB foil, fly ash, mine slates as well as wastes after toothpaste production. The main aim of the research was to combine car windshield glass and the aluminosilicate coal mine slates as a basis for light weight aggregates manufacturing. Fly ash were added in order to modify rheological properties of the plastic mass. Toothpaste wastes were introduced as a source of carbonates and CO2 evolution during thermal treatment. After milling and mixing all materials they were pressed and sintered at temperature range of 950°C-1100°C in air. The results show that it is possible to receive light weight aggregates only from the Silesian local waste materials. The significant influence of sintering temperature on properties of aggregates was observed.

Go to article

Authors and Affiliations

J. Smoleń
T. Pawlik
M. Sopicka-Lizer
D. Michalik
Download PDF Download RIS Download Bibtex

Abstract

Generation of coal-based electricity is always associated with the origination of large amount of combustion waste. The presented article is a review concerning the possibilities of innovative directions of management for one of the by-products of coal combustion: fly ash. The storage of these waste products is associated with their negative impact on the environment. This is why research has been undertaken worldwide on the implementation of the concept of a circular economy. This article includes the examination of basic physical, chemical, and mineralogical properties of the most valuable components of fly ash (microspheres, magnetic fraction, and glass). It contains the examination of methods of separating these components and indicates the prospective directions of their use, e.g. as light fillers for polymers, sorbents, catalysts, composite materials, light ceramics, lightweight concretes, thermal insulation materials, biomaterials, raw material for the synthesis of zeolites or geopolymers. The paper also presents the components of fly ash, which can be treated as an alternative source of valuable elements, including critical elements. Moreover, it points to the necessity of capturing flammable substances from combustion by-products in order to obtain raw material characterised by a high degree of purity. It has been demonstrated that this way of ash management can lead to high recycling rates and bring valuable materials back to the economy. Such actions fit perfectly into global efforts for sustainable development and the circular economy.
Go to article

Authors and Affiliations

Ewa Strzałkowska
1
ORCID: ORCID

  1. Silesian University of Technology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of studies into the phase and chemical composition of blast furnace slag in the context of its reuse. In practice, blast furnace slags are widely used in the construction industry and road building as a basis for the production of, for example, cements, road binders and slag bricks. T hey are also used in the production of concrete floors, mortars, and plasters. Blast furnace slag is mainly used as a valuable material in the production of hydraulic binders, especially cement that improves the mechanical properties of concretes.
The favorable physical and mechanical properties of slags, apart from economic aspects, are undoubtedly an asset when deciding to use them instead of natural raw materials. In addition to the above, there is also the ecological aspect, since by using waste materials, the environmental interference that occurs during the opencast mining of natural aggregates is reduced. S pecifically, this means waste utilization through secondary management.
However, it should be kept in mind that it is a material which quite easily and quickly responds to environmental changes triggered by external factors; therefore, along with the determination of its physical and mechanical properties, its phase and chemical composition must be also checked.
The studies showed that the predominant component of the blast furnace slag is glass which can amount up to 80%. In its vicinity, metallic precipitate as well as crystallites of periclase, dicalcium silicates and quartz can be found. With regard to the chemical composition of the slag, it was concluded that it meets the environmental and technical requirements regarding unbound and hydraulically bound mixtures. In case of the latter, in terms of its chemical composition, the slag meets the hydraulic activity category CA3. It also meets the chemical requirements for using it as a valuable addition to mortars and concretes, and it is useful in the production of CEM II Portland-composite cement, CEM III blast-furnace cement and CEM V composite cements. The blast furnace slag is a valuable raw material for cement production. Cement CEM III/C contains 81–95% of blast furnace slag in accordance with E N 197-1:2012. In 2019, the Polish cement industry used 1,939,387.7 tons of slag.
Go to article

Authors and Affiliations

Iwona Jonczy
1
ORCID: ORCID
Bartłomiej Grzesik
2
ORCID: ORCID
Andrzej Norbert Wieczorek
1
Anna Gerle
3
Paweł Nuckowski
4
Marcin Staszuk
4
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation, Gliwice, Poland
  2. Silesian University of Technology, Faculty of Civil Engineering, Gliwice, Poland
  3. Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Refractory Materials Division in Gliwice, Poland
  4. Silesian University of Technology, Faculty of Mechanical Engineering, Gliwice, Poland

This page uses 'cookies'. Learn more