Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 13
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the Motongkad prospect, East Bolaang Mongondow Regency, North Sulawesi Province, Indonesia, an epithermal gold mineralization occurred, hosted in andesitic-basaltic breccia, lava and tuff members the middle Miocene volcanic rock (Tmv). The Volcanic Rock is intruded by andesite dikes and contains fine quartz veins. Gold, silver, and pyrite found in the quartz veins.
This study consists of two main stages, field works and laboratory works. The field works were performed in whole area of the Motongkad prospect, where fresh and altered rock and mineralization samples were collected randomly, selectively, and systematically from outcrops as well as from a test pit. The laboratory works include petrography, X-ray diffraction (XRD), ore microscopy, and chemical analysis using the atomic absorption spectrometry (AAS) method.
The study area is arranged by three lithology units. Stratigraphically, the units are andesite rhyolite and tuff. The hydrothermal alteration in the study area are classified in five zones, namely: quartzsericite, quartz-sericite-clay, quartz-calcite-sericite-chlorite, quartz-calcite-sericite, and quartz-calcite- kaolinite. Motongkad prospect mineralization consists of two types, namely the vein type and the disseminated type. The ore minerals found in the Motongkad prospect are gold, pyrite, chalcopyrite, sphalerite, covellite, chalcocite, bornite and tennantite. We conclude that gold mineralization and its associated minerals in the Motongkad prospect are hydrothermal mineralization with epithermal characteristics.
Based on the results of mineragraphic analysis, there are two types of gold-bearing minerals found, namely native gold minerals and electrum, which are generally hosted by pyrite. Based on the distribution map of alteration and mineralization that has been made, it is recommended that the company wish to conduct mining with the highest gold content in the quartz-sericite and quartz-sericite- clay alteration zones, which are in the range of 0.83–1.07 g/t.
Go to article

Authors and Affiliations

Muhmammad Adam
1
Asri Jaya
1
Musri Mawaleda
1
Irzal Nur
2

  1. Earth and Environmental Technology Study Program, Geological Engineering Department,Faculty of Engineering, Hasanuddin University, Gowa, Indonesia
  2. Mining Engineering Department, Faculty of Engineering, Hasanuddin University, Gowa, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Effects from adsorption of organic species on the surface of nanomaterials have been investigated. Exposure to organic contaminants during material processing, handling and environmental exposure is unavoidable during the manufacturing process of nanoscale materials. In addition, at the nanoscale, surface area to volume ratios increase and surface effects will have an increasing influence on the material properties. Experimentally measured electrical properties of gold nanowires and composition will be presented. The results indicated that C, C—O—C and C=O are adsorbed at the surface of the gold nanowires. These surface contaminants are believed to cause the increase in measured resistivity. A theoretical study was performed to investigate diffusion of these contaminants into the first surface layer, which may act as scattering mechanisms for current flow.

Go to article

Authors and Affiliations

C.M. Lilley
R. Meyer
Download PDF Download RIS Download Bibtex

Abstract

In this work, the spectrophotometric studies on the kinetics of redox reaction between gold(III) bromide complexes and sodium nitrite, were carried out. From the kinetic curves collected under different conditions of reactants concentration, addition of bromide ions, temperature, pH and ionic strength, corresponding rate constants have been determined. The obtained results suggest the complex path of the [AuBr4]– reduction consisting of two parallel, bimolecular reactions where different reductant species (HNO2 and NO2–) take place and consecutive step with the metallic gold production. The second-order rate constants at 20oC are equal to 2.948 and 0.191 M–1·s–1, respectively. The values of activation enthalpy and activation entropy for the first and the second parallel step of the reaction were found to be ΔH‡ = 29.18 kJ·mol–1 and ΔS‡ = –13.95 J·mol–1·K, and ΔH‡ = 40.75 kJ·mol–1 and ΔS‡ = –31.06 ­J·mol–1·K, respectively. It was found that the reaction accelerates significantly with the increase of pH and is inhibited with the increase of Br– concentration. The substitutive, inner-sphere mechanism of electron transfer in the studied system was also suggested.

Go to article

Authors and Affiliations

K. Pacławski
Download PDF Download RIS Download Bibtex

Abstract

The use of local bacteria is preferred in bioleaching as an environmental-friendly alternative technology in gold mining. In a preliminary study, rhizobacteria were isolated and cultured from three types of hyperaccumulator vegetation from the Ratatotok gold mine, Indonesia, namely Pteris vittata L., Syzygium aromaticum L., and Swietenia mahagoni Jacq. These rhizobacteria still need to be characterised and identified. This study is aimed to cover bacterial phenotypic characterisation, assessment of bacteria resistance to tailing, and identification of bacterial strains the exhibit the highest resistance to tailings. The assessment was carried out across a spectrum of tailing concentrations, selecting the three most robust strains for molecular identification. The process involved genotypic characterisation to determine the species name by analysing the 16S rRNA gene. The results reveal that the phenotypic characteristics of the bacteria isolates vary, but all of them are the indole acetic acid (IAA) hormone producers. The highest IAA producer is the isolate from the rhizosphere of S. aromaticum. Based on the genotypic characterisation test, three most resistant isolates to tailing stress are the following strains Pseudomonas aeruginosa (RTKP1) and Stenotrophomonas geniculata (RTKP2), both from the rhizosphere of P. vittata; as well as Bacillus cereus (RTKS) from the rhizosphere of S. aromaticum. These three strains need to be further tested for their bioleaching capability to recover gold from tailings. Additionally, this study recommends that gold recovery using biological agents can combine the role of hyperaccumulator plants in phytomining and rhizobacteria in bioleaching.
Go to article

Authors and Affiliations

Tien Aminatun
1
ORCID: ORCID
Anna Rakhmawati
1
ORCID: ORCID
Sri Atun
1
ORCID: ORCID
Arifudin Idrus
2
ORCID: ORCID
Doly Risdo Simbolon
3
ORCID: ORCID
Laode Restele
4
ORCID: ORCID

  1. Universitas Negeri Yogyakarta, Faculty of Mathematics and Natural Sciences, Jl. Colombo No. 1 Karangmalang (55281), Yogyakarta, Indonesia
  2. Universitas Gadjah Mada, Faculty of Engineering, Department of Geological Engineering, Jl. Grafika 2 Bulaksumur (55281), Yogyakarta, Indonesia
  3. PT Sumber Energi Jaya, Jl. Elang Laut, Ruko Boulevard No. 32-33 (14470), Jakarta, Indonesia
  4. Halu Oleo University, Faculty of Mathematics and Natural Sciences, Jl. HEA Mokodompit, Kampus Hijau Bumi Tridharma Anduonohu (93561), Kendari, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

At present, with the increase of production capacity and the promotion of production, the reserves

of most mining enterprises under the original industrial indexes are rapidly consumed, and the full

use of low-grade resources is getting more and more attention. If mining enterprises want to make

full use of low-grade resources simultaneously and obtain good economic benefits to strengthening

the analysis and management of costs is necessary. For metal underground mines, with the gradual

implementation of exploration and mining projects, capital investment and labor consumption are

dynamic and increase cumulatively in stages. Consequently, in the evaluation of ore value, we should

proceed from a series of processes such as: exploration, mining, processing and the smelting of

geological resources, and then study the resources increment in different stages of production and the

processing. To achieve a phased assessment of the ore value and fine evaluation of the cost, based on

the value chain theory and referring to the modeling method of computer integrated manufacturing

open system architecture (CIMOSA), the analysis framework of gold mining enterprise value chain is

established based on the value chain theory from the three dimensions of value-added activities, value

subjects and value carriers. A value chain model using ore flow as the carrying body is built based on

Petri nets. With the CPN Tools emulation tool, the cycle simulation of the model is carry out by the

colored Petri nets, which contain a hierarchical structure. Taking a large-scale gold mining enterprise

as an example, the value chain model is quantified to simulate the ore value formation, flow, transmission

and implementation process. By analyzing the results of the simulation, the ore value at different

production stages is evaluated dynamically, and the cost is similarly analyzed in stages, which can improve mining enterprise cost management, promote the application of computer modeling and

simulation technology in mine engineering, more accurately evaluate the economic feasibility of ore

utilization, and provide the basis for the value evaluation and effective utilization of low-grade ores.

Go to article

Authors and Affiliations

Zhaoyang Ma
Nailian Hu
Guoqing Li
Di Liu
Tao Pan
Download PDF Download RIS Download Bibtex

Abstract

To improve bioremediation of arsenic (As) contamination in soil, the use of microorganisms to efficiently reduce As and their assessment of genetic erosion by DNA damage using genomic template stability (GTS) evaluation and using RAPD markers were investigated. The five sites examined for microorganisms and contaminated soils were collected from affected gold mining areas. The highest As concentration in gold mining soil is 0.72 mg/kg. Microorganism strains isolated from the gold mining soil samples were tested for As removal capacity. Two bacterial isolates were identified by 16S rRNA gene sequence analysis and morphological characteristics as Brevibacillus reuszeri and Rhodococcus sp. The ability to treat As in nutrient agar (NA) at 1,600 mg/L and contaminated soil samples at 0.72 mg/kg was measured at 168 h, revealing more efficient As removal by B. reuszeri than Rhodococcus sp. (96.67% and 94.17%, respectively). Both species have the capacity to remove As, but B. reuszeri shows improved growth compared to the Rhodococcus sp. B. reuszeri might be suitable for adaptation and use in As treatment. The results are in agreement with their genetic erosion values, with B. reuszeri showing very little genetic erosion (12.46%) of culture in As concentrations as high as 1,600 mg/L, whereas 82.54% genetic erosion occurred in the Rhodococcus sp., suggesting that Rhodococcus sp. would not survive at this level of genetic erosion. Therefore, B. reuszeri has a high efficiency and can be used for soil As treatment, as it is capable to tolerate a concentration of 0.72 mg/kg and as high as 1,600 mg/L in NA.

Go to article

Authors and Affiliations

Lamyai Neeratanaphan
Tawatchai Tanee
Alongklod Tanomtong
Bundit Tengjaroenkul
Download PDF Download RIS Download Bibtex

Abstract

Nanoparticles are very fascinating area of science not only due to their unique properties but also possibility of producing new more complex materials, which may find an application in modern chemistry, engineering and medicine. In process of nanoparticles formation very important aspect is a rate of individual stage i.e. reduction, nucleation and autocatalytic growth, because this knowledge allows for proper materials design, morphology manipulation, stability. The last one aspect can be realized using proper electrostatic, steric and electrosteric stabilization. However until now nobody reports and measures kinetic rates of all stages during process of particles formation in the presence of steric stabilizers. Thus, the main contribution of this paper is determination of individual rate constants for nanoparticles formation in the presence of steric stabilizers and their comparison to the system without stabilizer. For this purpose, an aqueous solution of Au(III) and Pt(IV) ions were mixed with steric stabilizers like PVA and PVP, and reduced using L-ascorbic acid as a mild and sodium borohydride as a strong reductant. As a results stable nanoparticles were formed and process of their formation was registered spectrophotometrically. From obtained kinetic curves the values of observed rate constants for reduction metal ions, slow nucleation and fast autocatalytic growth were determined using Watzky-Finke model. It was found that the addition of polymer affects the rate of the individual stages. The addition of steric stabilizers to gold ions reduced with L-ascorbic acid causes that the process of nucleation and autocatalytic growth slows down and the value of observed rate constants for nucleation changes from 3.79·10–3 (without polymer) to 7.15·10–5s–1 (with PVA) and for growth changes from 1.15·103 (without polymer) to 0.48·102s–1M–1 (with PVA). However, the rate of the reduction reaction of Au(III) ions is practically unchanged. In case of using strong reductant the addition of polymer effects on the shape of kinetic curve for reduction of Au(III) and it suggests that mechanism is changed. In case of Pt(IV) ions reduction with L-ascorbic acid, the process speeds up a little when PVA was added. Determined values of observed rate constants for nucleation and growth platinum nanoparticles decrease twice comparing to the system without polymer. The reduction of Pt(IV) ions with sodium borohydride accelerates when PVP was added and slows down when PVA was used. Moreover, the size of obtained colloidal gold and platinum was also analysed using DLS method. Obtained results (rate constants) may be useful in the process of nanomaterials synthesis, in particular in microflow.

Go to article

Authors and Affiliations

M. Luty-Błocho
Download PDF Download RIS Download Bibtex

Abstract

In this article, gold is analyzed from an investment perspective as an asset that allows you to increase your wealth. The analysis is twofold. First, it is about examining to what extent changes in gold prices in the world markets translate into changes in the prices of shares of companies that extract gold. Second, it was checked whether there is a financial leverage effect, which in this case means that changes in the price of shares of gold mining companies are greater than changes in the price of gold itself. Methodically, the Sharpe model was used and two basic parameters of the model were estimated, i.e. the intercept (alpha), and the beta coefficient as a measure of systematic risk, for the gold market and the equity market of gold mining companies and ET Fs based on these companies.
The research carried out in accordance with the logic of the Sharpe model shows that the obtained value of the alpha parameter for the stock market was positive, while for the gold market it was negative. At the same time, higher levels of this parameter are beneficial to the investor, which means that an advantage of the stock market over the gold market exists. In turn, the estimated beta for the stock market is much lower than for the gold market. The systematic risk level for stocks is 0.45, and for the gold market it is 1.98, which is a significant difference. The stocks of gold mining companies can be classified as defensive against the stock market (the rate of return of the gold mine stock is insensitive to market movements) and aggressive against the gold market (the rate of return of the gold mine shares reacts more strongly than the movement in the price of gold).
Go to article

Authors and Affiliations

Mikołaj Baranowski
1
Krystian Pera
1
ORCID: ORCID

  1. University of Economics, Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work aims to determine and compare heat generation and propagation of densely packed gold nanoparticles (Au NPs) induced by a resonant laser beam (532 nm) according to the Mie theory. The heat flux propagation is transferred into the materials, which here are: silica glass; soda-lime-silica glass; borosilicate glass; polymethyl methacrylate (PMMA); polycarbonate (PC); and polydimetylosiloxane (PDMS). This analysis aims to select the optimum material serving as a base for using photo-thermoablation. On the other hand, research focused only on Newtonian heat transfer in gold, not on non-Fourier ones, like the Cattaneo approach. As a simulation tool, a computational fluid dynamics code with the second-order upwind algorithm is selected. Results reveal a near-Gaussian and Gaussian temperature distribution profile during the heating and cooling processes, respectively. Dependence between the maximum temperature after irradiation and the glass thermal conductivity is observed confirming the Fourier law. Due to the maximum heating area, the borosilicate or soda-lime glass, which serves as a base, shall represent an excellent candidate for future experiments.
Go to article

Bibliography

[1] Dash S., Mohanty S., Pradhan S., Mishra B.K.: CFD design of a microfluidic device for continuous dielectrophoretic separation of charged gold nanoparticles. J. Taiwan Inst. Chem. Eng. 58(2016), 39–48.
[2] Paruch M., Mochnacki B.: Cattaneo-Vernotte bio-heat transfer equation. Identification of external heat flux and relaxation time in domain of heated skin tissue. Comput. Assist. Meth. Eng. Sci. 25(2018), 2–3, 71–80.
[3] Alia M.E., Sandeep N.: Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: A numerical study. Results Phys. 7(2017), 21–30.
[4] Paruch M., Majchrzak E.: The modelling of heating a tissue subjected to external electromagnetic field. Acta Bioeng. Biomech. 10(2008), 2, 29–37.
[5] Feng B., Li Z., Zhang X.: Prediction of size effect on thermal conductivity of nanoscale metallic films. Thin Solid Films 517(2009), 8, 2803–2807.
[6] Wang B.-X., Zhou L.-P., Peng X.-F.: Surface and size effects on the specific heat capacity of nanoparticles. Int. J. Thermophys. 1(2006), 27, 139–151.
[7] Mie G.: Beträge zur Optik trüber Medien, speziell kolloidaler Metalösungen. Annalen der Physik 330(1908), 3, 377–445.
[8] Pezzi L., De Sio L. Veltri I., Placido T. et al.: Photo-thermal effects in gold nanoparticles dispersed in thermotropic menamic liquid crystals. Phys. Chem. Chem. Phys. 17(2015), 31, 20281–20287.
[9] Pierini F., Tabiryan N., Umeton C., Bunning T.J., De Sio L.: Thermoplasmonics with Gold Nanoparticles: A new weapon in Modern Optics and Biomedicine. Adv. Photonics Res. 2(2021), 8, 1–17.
[10] Annesi F. et al.: Biocompatible and biomimetic keratin capped Au nanoparticles enable the inactivation of mesophilic bacteria via photo-thermal therapy. Colloid. Surface. A 625(2021), 126950.
[11] Bohren C.F., Huffman D.R.: Absorption and Scattering of Light by Small Particles: Wiley-VCH, 1998.
[12] Guglielmelli A. et al.: Biomimetic keratin gold nanoparticle-mediated in vitro photothermal therapy on glioblastoma multiforme. Nanomedicine 16(2021), 2, 121– 138.
[13] Black S.E.: Laser ablation: Effects and Applications. Nova Science, New York 2011.
[14] Radhakrishnan A., Murugesan V.: Calculation of the extinction cross section and lifetime of a gold nanoparticle using FDTD simulations. AIP Conf. Proc. 1620(2014), 52–57.
[15] Giannini V, Fernandez-Domínguez A.I., Heck S.C., Maier S.A.: Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111(2011), 6, 3888 – 3912.
[16] Louis C., Pluchery O. (Eds.): Gold Nanoparticles for Physics, Chemistry and Biology. Imperial College, London 2012.
[17] Martin R.J.: Mie scattering formulae for non-spherical particles. J. Mod. Optic. 12(1993), 40, 2467–2494
[18] Myers T.G.: Why are the slip lengths so large in carbon nanotubes? Microfluid. Nanofluid. 10(2011), 1145–1145.
[19] Whitby M., Cagnon L., Thanou M., Quirke N.: Enhanced fluid flow through nanoscale carbon pipes. Nano Lett. 8(2008), 9, 2632–2637.
[20] Maxwell J.C.: On stresses in rarified gases arising from inequalities of temperature. Philos. T. R. Soc. Lond. 170(1879), 231–25.
[21] Ziółkowski P., Badur J.: A theoretical, numerical and experimental verification of the Reynolds thermal transpiration law. Int. J. Numer. Method H. 28(2018), 1, 64–80.
[22] Ziółkowski P.: Porous structures in aspects of transpirating cooling of oxycombustion chamber walls. AIP Conf. Proc. 2077(2019), 020065-1–020065-9.
[23] Badur J., Freidt M., Ziółkowski P.: Neoclassical Navier–Stokes equations considering the Gyftopolous–Beretta exposition of thermodynamics. Energies 13(2020), 1656, 1–32.
[24] Mikielewicz D.: Hydrodynamics and heat transfer in bubbly two-phase flows. Int. J. Heat Mass Tran. 46(2002), 2, 207–220.
[25] Muszynski T., Mikielewicz D.: Comparison of heat transfer characteristics in surface cooling with boiling microjets of water, ethanol and HFE7100. Appl. Therm. Eng. 93(2016), 1403–1409.
[26] Badur J.: Concept of Energy Evolution. Wydawn. IMP PAN, Gdansk 2009 (in Polish).
[27] Smoluchowski M.: On conduction of heat by rarefied gases. Phyl. Mag. 46(1898), 192–206.
[28] Smoluchowski M.: On conduction of heat in pulverized solids. Pol. Ac. Art. Sci. 2(1927), 1, 66–77.
[29] Docherty S.Y., Borg M.K., Lockerby D.A., Reese J.M.: Multiscale simulation of heat transfer in a rarefied gas. Int. J. Heat. Fluid. Fl. 50(2014), 114–125.
[30] Stephenson D., Lockerby D.A., Borg M.K., Reese J.M.: Multiscale simulation of nanofluidic networks of arbitrary complexity. Microfluid. Nanofluid. 18(2015), 5– 6, 841–858.
[31] Lockerby D.A., Patronis A., Borg M.K., Reese J.M.: Asynchronous coupling of hybrid models for efficient simulation of multiscale systems. J. Comput. Phys. 284(2015) 261–272.
[32] Sobieski W., Zhang Q.: Multi-scale modeling of flow resistance in granular porous media. Math. Comput. Simulat. 132(2017), 159–171.
[33] Johnson P.B., Christy R.W.: Optical constants of the noble metals. Phys. Rev. B. 6(1972), 12, 4370–4379.
[34] Narottam P.B.: Handbook of Glass Properties. Academic Press, New York 1986.
[35] Agari Y., Ueda A., Omura Y.: Thermal diffusivity and conductivity of PMMA/PC blends. Polymer 38(1997), 4, 801–807.
[36] Cahill D.G., Olson J.R., Fischer H.E., Watson S.K., Stephens R.B., Tait R.H., Ashworth T., Pohl R.O.: Thermal conductivity and specific heat of glass ceramics. Phys. Rev. B 44(1991), 22, 226–232,
[37] James E.M. (Ed.): Polymer Data Handbook. Oxford University Press (1999), 131, 363–367, 411–435, 655–657.
[38] Dixon M.C., Daniel T.A., Hieda M., Smilgies D.M., Chan M.C., Allara D.L.: Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 23(2007), 5, 2414–2422.
[39] Harvey B.S.: Hyperthermia. New Engl. J. Med. 329(1993), 483–487.
[40] Barichello L.B., Siewert C.E.: A discrete-ordinates solution for a non-grey model withcomplete frequency redistribution. J. Quant. Spectrosc. Ra. 2(1999), 2, 665–675.
[41] Koniorczyk P., Zmywaczyk J.: Analysis of thermal conductivity reduction in grey medium using a discrete ordinate method and the Henyey–Greenstein phase function for absorbing, emitting and anisotropically scattering media. Arch. Thermodyn. 29(2008), 2, 47–60.
[42] Filkoski R.V.: Radiation heat transfer modeling and CFD analysis of pulverizedcoal combustion with staged air introduction. Arch. Thermodyn. 30(2009), 4, 97–118.
[43] Dabrowski P.: Selected studies of flow maldistribution in a minichannel plate heat exchanger. Arch. Thermodyn. 38(2017), 3, 135–148.
Go to article

Authors and Affiliations

Piotr Radomski
1
Paweł Ziółkowski
1
Luciano de Sio
2
Dariusz Mikielewicz
1

  1. Gdansk University of Technology, Faculty of Mechanical Engineering and Shipbuilding, Energy Institute, Narutowicza 11/12, 80-233 Gdansk, Poland
  2. Sapienza University of Rome, Department of Medico-Surgical Sciencesand Biotechnologies, Center for Biophotonics, Piazzale Aldo Moro 5,00185 Roma, RM, Italy
Download PDF Download RIS Download Bibtex

Abstract

The gold recovery from cyanidation tailings was only 4.01% with the general flotation process, the surface analyses of flotation products were performed, and the results showed that the poor gold recovery with general flotation process was due to the passive films covering the surface of the gold bearing pyrite. These films are mainly hydrophilic hydroxides of Ca, Fe and Mg, at the same time, the depression of CN– to pyrite flotation in the flotation slurry was also a main contributing factor. With the surface repair regeneration procedures, it was proven that sulfuric acid pretreatment plays a dominant role in the removing and cleaning of passive films, while destroying free cyanides in the slurry. Sodium carbonate was then used as a buffering pH modifier and as a slurry dispersant after sulfuric acid pretreatment. The gold recovery was as high as 93.41%, compared to the original gold recovery of 4.01%.
Go to article

Authors and Affiliations

Huang Zhongsheng
1 2 3
Yang Tianzu
1

  1. School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
  2. State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Xiamen 3361101, Fujian, China
  3. Zijin Mining Group Company Limited, Shanghang 364200, Fujian, China
Download PDF Download RIS Download Bibtex

Abstract

The composite materials as FRP (Fiber Reinforced Polymers), which are characterized by benefits resulting from the combination of high strength reinforcement (as carbon, glass, steel or aramid fibers) with synthetic matrix are increasingly used to reinforce existing structures. Reinforcing System as FRCM (Fibre Reinforced Cementitious Matrix), which includes, among others, Ruredil X Mesh Gold System, is much less commonly used. However, the uniform and practical methods for calculating composite reinforced structures are not determined. Especially when considering the real conditions of structure exploitation, which requires further research in this field. In the paper the initial loading level influence on the efficiency of reinforced concrete beams strengthen using system Ruredil X Mesh Gold was investigated.

Go to article

Authors and Affiliations

Z. Blikharskyy
K. Brózda
J. Selejdak
Download PDF Download RIS Download Bibtex

Abstract

Thermo-optic properties enhancement of the bi-stable temperature threshold sensors based on a partially filled photonic crystal fiber was reported. Previously tested transducers filled with a selected group of pure n-alkanes had in most cases differences between switching ON and OFF states. Therefore, the modification of filling material by using additional crystallization centers in the form of gold nanoparticles was applied to minimize this undesirable effect. The evaluation of the thermodynamic properties of pentadecane and its mixtures with 14 nm spherical Au nanoparticles based on the differential scanning calorimetry measurements was presented. Optical properties analysis of sensors prepared with these mixtures has shown that they are bounded with refractive index changes of the filling material. Particular sensor switches ON before melting process begins and switches OFF before crystallization starts. Admixing next group of n-alkanes with these nanoparticles allows to design six sensors transducers which change ON and OFF states at the same temperature. Thus, the transducers with a wider temperature range for fiber-optic multi-threshold temperature sensor tests will be used.

Go to article

Authors and Affiliations

N. Przybysz
P. Marć
E. Tomaszewska
J. Grobelny
L.R. Jaroszewicz
ORCID: ORCID

This page uses 'cookies'. Learn more