Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents test results for the assessment of the tracer content in a three-component (green peas, sorghum, maize) feed mixture that is based on the fluorescent method. The homogeneity of mixtures was determined on the basis of the maize content (as the key component), which was treated with fluorescent substance: tinopal, rhodamine B, uranine and eosin. The key components were wet-treated with fluorescent substances with different concentrations. Feed components were mixed in a vertical funnel-flow mixer. 10 samples were collected from each mixed batch. Samples were placed in a chamber equipped with UV light and, then, an image recorded as BMP file was generated. The image was analysed by means of the software programme Patan. On the basis of the analyses conducted, data on the maize content marked with a fluorescent marker were obtained. Additionally, the content of the key component was determined in a conventional manner – using an analytical scale. Results indicate the possibility of using this method for homogeneity assessment of the three-component grain mixture. From these tests, fluorescent substances that can be applied in the case of maize as a key component, together with their minimum concentrations, were identified: tinopal 0.3%, rhodamine B 0.001%.

Go to article

Authors and Affiliations

Dominika B. Matuszek
Krystian Wojtkiewicz
Download PDF Download RIS Download Bibtex

Abstract

The formulas have been entered and approved for the calculation of porosity distribution on the thickness of layer of fine-grained mixture during its separation by the inclined flat or vertical cylinder vibro sieves. It has been attained as a result of approximation of tabular information of the obtained numerical computer integration of the specially worked out nonlinear differential equations of the second order in a dimensionless form. For approximation, the function of degree coefficients and index is used for the degrees which are certain by the Aitken's method. Coefficients of the entered analytical dependence are the vibro sieves related to the parameters obtained by mechanical descriptions of the separated material. Coefficients of the entered analytical dependence are related to the parameters of vibro sieves and mechanical descriptions of the separated material. In the case of cylinder vertical vibro sieve the action of centrifugal force is also taken into account. The method of mixture porosity calculation does not need a computer numerical integration of nonlinear differential equations conducted by other authors for solving this problem. Comparison of numerical results of the proposed analytical method of calculation with the ones described in literature, have confirmed its high accuracy results, for the differences do not exceed one percent. The expounded method is universal enough and simple in use, besides it opens the possibilities of subsequent analytical integration of differential equalizations of motion at the calculation of kinematics descriptions of grain flow. The developed method gives the opportunity to also solve the inverse task when, according to experimental measurements of porosity values of grain mixtures on the thickness of movable separated layer, it is needed to find the value of phenomenological permanent that is included in the expressions of coefficients of initial differential equalization. In this way, the adequacy of the mathematical model is improved. The use of approximation of degree considerably simplifies the method of authentication of differential equalization coefficients. In the article, the examples of grain mixture porosity calculation as well as the examples of phenomenological permanent authentication have been resulted after experimental calculations for both the variants of vibro sieves.
Go to article

Authors and Affiliations

Vasily Olshanskii
Alexander Olshanskii
Sergey Kharchenko
Farida Kharchenko

This page uses 'cookies'. Learn more