Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 16
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study was aimed to determine the hydrodynamic of water seepage through a porous bed saturated with different amounts of high viscosity liquids. An attempt was made to describe the process of seepage through beds saturated with oils using the theory of outflow of a liquid from the tank. It was assumed that the discharge coefficient will represent changes of flow resistance during the process. It was found that the dependence of this factor on time is linear. In the second part of this work kinetics of the seepage process was investigated. Dependence of oil concentrations, eluted from the deposit with the flowing water, on time has been evaluated. Thanks to these studies it was possible to determine the effectiveness of an elution of high viscosity liquids from porous beds using water as the washing out liquid.

Go to article

Authors and Affiliations

Jerzy Sęk
Mariola Błaszczyk
Michał Bartos
Download PDF Download RIS Download Bibtex

Abstract

The paper presents selected granular ceramic materials available on the Polish market. Their characteristics have been determined in the aspect on application in the production of iron alloy-ceramic composite. The possibility of obtaining a composite layer by means of bulk grains in molds of plates were considered, which was the foundation for experimental molds to be used in service tests. On the basis of obtaining results was stated that the knowledge of the characteristics of bulk grains enables the calculation of their quantity necessary for the composite production. When using the bulk grains the thickness of the composite layer is restricted by the thermal relations (cooler) and the physical phenomena (buoyancy, metal static pressure). Increasing amount of grains above definite condition causes surface defects in the castings. Each casting, due to its weight, shape and place of composite layer production requires an individual approach, both at the stage of formation and that of calculation of the required quantity of ceramic grains.
Go to article

Authors and Affiliations

A. Dulska
J. Kilarski
A. Studnicki
J. Szajnar
Download PDF Download RIS Download Bibtex

Abstract

The short outlook at main problems related to pollutant migration modelling in the granular layer is critically discussed in the paper. The general model of pollutant migration in granular was transposed into dimensionless form. The general model was adapted to describe the examined decontamination technology and two operational models were differentiated due to the dominant mass transfer resistances in the system. The verification validated the functional effectiveness of the suggested model and its numerical implementation under different conditions. It approves the possibility of the practical application of the proposed method. The problem of influence of irregular distribution of negative mass sources (sorptivc agglomerates) on mass transport in the granular layer was underlined.
Go to article

Authors and Affiliations

Anna Adach
Stanisław Wroński
Download PDF Download RIS Download Bibtex

Abstract

The following discussion concerns the use of innovative smart materials called vacuum-packed particles (VPPs) as active energy absorbers. VPP, also known as a granular jamming system, is a structure composed of granular media contained within an elastomer coating. By changing the vacuum pressure inside the coating, it is possible to control the mechanical properties of the structure. VPPs have many applications, e.g. in medicine, robotics, and vibration damping. No attempts have yet been made to use VPPs to absorb the energy of a collision, although, given their properties, this could very well be an interesting application. In the first part of the paper, the general concept of the absorber is presented. Then a prototype and the empirical tests conducted are precisely described. The middle part of the paper considers the basic properties of VPP and modeling methodology. A proposal for a constitutive equation is presented, and a numerical simulation using LS-Dyna was performed. In the final section, the concept of a smart parking post is presented..
Go to article

Bibliography

  1.  J. Holnicki-Szulc, P. Pawlowski, and M. Wiklo, “High-performance impact absorbing materialsthe concept, design tools and applications,” Smart Mater. Struct., vol. 12, no. 3, pp. 461–467, May 2003, doi: 10.1088/0964-1726/12/3/317.
  2.  T. Fras, C.C. Rot, and D. Mohr, “Application of two fracture models in impact simulations”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 2, pp. 317–325, 2020.
  3.  N. Schmidová, T. Zavřelová, M. Vašíček, F. Zavadil, M. Růžička, and M. Rund, “Development of Adaptable CFRP Energy Absorbers for Car Crashes”, Mater. Today:. Proc., vol. 5, no. 13, part 2, pp. 26784–26791, 2018, doi: 10.1016/j.matpr.2018.08.152.
  4.  M. Pyrz and M. Krzywoblocki, “Crashworthiness optimization of thin-walled tubes using Macro Element Method and Evolutionary Algorithm,” Thin-Walled Struct., vol. 112, pp. 12–19, Feb. 2017.
  5.  C. Graczykowski and R. Faraj, “Development of control systems for fluid-based adaptive impact absorbers”, Mech. Syst. Signal Process., vol. 122, pp. 622–641, 2019, doi: 10.1016/j.ymssp.2018.12.006.
  6.  P. Bartkowski and R. Zalewski, “Designing Process of the Drone’s Passive Safety System”, in: New Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing, vol 445, Á. Rocha, A. Correia, H. Adeli, L. Reis, M. Mendonça Teixeira, (Eds.), Springer, Cham., doi: 10.1007/978-3-319-31307-8_74.
  7.  A.M. Molan, M. Rezapour, and K. Ksaibati, “Modeling traffic barriers crash severity by considering the effect of traffic barrier dimensions”, J. Modern Transp., vol. 27, no. 2, pp. 141–151, 2019, doi: 10.1007/s40534-019-0186-1.
  8.  R. Zalewski, Modelowanie i badania wpływu podcis´nienia na włas´ciwos´ci mechaniczne specjalnych struktur granulowanych, Wydawnictwo Komunikacji i Łączności, 2013.
  9.  L. Blanc, B. François, A. Delchambre, and P. Lambert, “Characterization and modeling of granular jamming: models for mechanical design”, Granular Matter, vol. 23, Feb. 2021, doi: 10.1007/s10035-020-01071-5.
  10.  D. Brigido, S. Burrow, and B. Woods, “Switchable stiffness morphing aerostructures based on granular jamming”, J. Intell. Mater. Syst. Struct., vol. 30, p. 14, Feb. 2019, doi: 10.1177/1045389X19862372.
  11.  L. Li, Z. Liu, M. Zhou, X. Li, Y. Meng, and Y. Tian, “Flexible adhesion control by modulating backing stiffness based on jamming of granular materials”, Smart Mater. Struct., vol. 28, no. 11, p. 115023, Oct. 2019, doi: 10.1088/1361-665x/ab46f3.
  12.  P. Bartkowski, R. Zalewski, and P. Chodkiewicz, “Parameter identification of Bouc-Wen model for vacuum packed particles based on genetic algorithm”, Arch. Civ. Mech. Eng., vol. 19, no. 2, pp. 322–333, 2019, doi: 10.1016/j.acme.2018.11.002.
  13.  M.D. Luscombe and J.L. Williams, “Comparison of a long spinal board and vacuum mattress for spinal immobilisation”, Emergency Med. J., vol. 20, no. 5, pp. 476–478, 2003.
  14.  L. Blanc, B. François, A. Delchambre, and P. Lambert, “Granular jamming as controllable stiffness mechanism for endoscopic and catheter applications”, 2016.
  15.  N.G.S. Cheng, “Design and analysis of jammable granular systems”, Thesis (Ph. D.)-Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.
  16.  J. Gómez–Paccapelo, A. Santarossa, H. Bustos, and L. Pugnaloni, “Effect of the granular material on the maximum holding force of a granular gripper”, Granular Matter, vol. 23, p. 4, 2021.
  17.  E. Brown et al., “Universal Robotic Gripper Based on the Jamming of Granular Material”, PNAS, vol. 107, Feb. 2010, doi: 10.1073/ pnas.1003250107.
  18.  R. Zalewski, P. Chodkiewicz, and M. Shillor, “Vibrations of a mass-spring system using a granular-material damper”, Appl. Math. Modell., vol. 40, no. 17-18, pp. 8033–8047, 2016.
  19.  S.-Q. An, H.-L. Zou, Z.-C. Deng, and D.-Y. Guo, “Damping effect of particle-jamming structure for soft actuators with 3Dprinted particles”, Smart Mater. Struct., vol. 29, no. 9, p. 95012, Aug. 2020, doi: 10.1088/1361-665x/ab9f47.
  20.  R. Zalewski, “Constitutive model for special granular structures”, Int. J. Non Linear Mech., vol. 45, pp. 279–285, Feb. 2010, doi: 10.1016/j. ijnonlinmec.2009.11.011.
  21.  F. Putzu, J. Konstantinova, and K. Althoefer, “Soft Particles for Granular Jamming”, in: Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science, vol 11650, K. Althoefer, J. Konstantinova, K. Zhang (Eds.), Springer, Cham., doi: 10.1007/978-3- 030-25332-5_6, 2019, pp. 65–74.
  22.  A. Jiang et al., “Robotic Granular Jamming: Does the Membrane Matter?”, Soft Robotics (SoRo), vol. 1, pp. 192–201, Feb. 2014, doi: 10.1089/ soro.2014.0002.
  23.  M.T. Huber, “O podstawach teoryi wytrzymałości”, Prace Matematyczno-Fizyczne, pp. 47–59, 1904.
  24.  P. Cyklis and P. Młynarczyk, “The CFD Based Estimation of Pressure Pulsation Damping Parameters for the Manifold Element”, Procedia Eng., vol. 157, pp. 387–395, 2016, doi: 10.1016/j.proeng.2016.08.381.
  25.  N. Vasiraja and P. Nagaraj, “The effect of material gradient on the static and dynamic response of layered functionally graded material plate using finite element method”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 4, pp. 828–838, 2019, doi: 10.24425/bpasts.2019.130191.
Go to article

Authors and Affiliations

Piotr Bartkowski
1
Hubert Bukowiecki
1
Franciszek Gawiński
1
Robert Zalewski
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents research results of the introduction of powdery activated carbon to the existing technological system of the groundwater treatment stations in a laboratory, pilot plant and technical scale. The aim of the research was to reduce the content of organic compounds found in the treated water, which create toxic organic chlorine compounds (THM) after disinfection with chlorine. Nine types of powdery active carbons were tested in laboratory scale. The top two were selected for further study. Pilot plant scale research was carried out for the filter model using CWZ-30 and Norit Sa Super carbon. Reduction of the organic matter in relation to the existing content in the treated water reached about 30%. Research in technical scale using CWZ-30 carbon showed a lesser efficiency with respect to laboratory and pilot-plant scale studies. The organic matter decreased by 15%. Since filtration is the last process before the individual disinfection, an alternative solution is proposed, i.e. the second stage of filtration with a granular activated carbon bed, operating in combined sorption and biodegradation processes. The results of tests carried out in pilot scale were fully satisfactory with the effectiveness of 70–100%.

Go to article

Authors and Affiliations

Jadwiga Kaleta
Małgorzata Kida
Piotr Koszelnik
Dorota Papciak
Alicja Puszkarewicz
Barbara Tchórzewska-Cieślak
Download PDF Download RIS Download Bibtex

Abstract

Mixing of granular materials is unquestionably important. Mixing solids is common in industrial applications and frequently represents a critical stage of the processes. The effect of mixing determines the quality of the products. Achieving a gas or liquid mixture ideally homogeneous in terms of composition in the case of dissolving components is not that difficult, while in case of granular materials that usually differ in sizes and densities, obtaining a homogenous mixture is practically impossible. The aim of the paper is to present the kinetics of mixing of a multicomponent, nonhomogeneous granular mixture. For the first time in mixing of granular materials, a reference has been made to the terminology used in kinematics of fluid mixtures to determine the state of the mixture: turbulent or laminar. By means of statistical analysis the mixing process was divided into two stages. The initial phase of the process was called the stage of turbulent changes, due to large differences in the quality of the observed mixtures; the final step of the process was called the stage of laminar, stable changes, where further mixing did not result in a significant improvement in quality. The research was conducted in industrial conditions in a two-tonne mixer.

Go to article

Authors and Affiliations

Jolanta B. Królczyk
Download PDF Download RIS Download Bibtex

Abstract

Belts are widely applied in mine production for conveying ores. Understanding ore granularity, which is a crucial factor in determining the effectiveness of crushers, is vital for optimising production efficiency throughout the crushing process and ensuring the success of subsequent operations. Based on edge computing technology, an online detection method is investigated to rapidly and accurately obtain ore granularity information on high-speed conveyor belts. The detection system utilising machine vision technology is designed in this paper. The high-speed camera set above the belt is used to collect the image of the ore flow, and the collected image is input into the edge computing device. After binary, grey morphology and convex hull algorithm processing, the particle size distribution of ore is obtained by statistical analysis. Finally, a 5G router is used to output the settlement result to a cloud platform. In the GUANBAOSHAN mine of Ansteel Group, the deviation between manual screening and image particle size analysis was studied. Experimental results show that the proposed method can detect the ore granularity, ore flow width and ore flow terminal in real-time. It can provide a reference for the staff to adjust the parameters of the crushing equipment, reduce the mechanical loss and the energy consumption of the equipment, improve the efficiency of crushing operation and reduce the failure rate of the crusher.
Go to article

Authors and Affiliations

Jiang Yao
1
Yinbo Xue
2
Xiaoliang Li
2
Lei Zhai
2
Zhenyu Yang
3
Wenhui Zhang
3

  1. Northeastern University, China
  2. Chinese Academy of Sciences Allwin Technology Co., Ltd, China
  3. Ansteel Group Guanbaoshan Mining Co., Ltd, China
Download PDF Download RIS Download Bibtex

Abstract

This work investigates adsorption of n-hexane on activated tyre pyrolysis char (ATPC) and granular activated carbon (GAC) as a reference material in a fixed-bed column. Microwave-assisted regeneration is also considered. The adsorbed amount of n-hexane on ATPC is in the range of 37–58 mg/g. Microwave-assisted desorption of ATPC samples enables the recovery of up to 95% of adsorbed n-hexane in this non-optimized microwave setup with the efficiency of microwave energy conversion into heat of only 5–6%. For the 50% breakthrough time, ATPC and GAC are able to purify the n-hexane gas volumes in the ranges of 20–90 and 935–1240 cm3/g, respectively. While adsorption kinetics is not satisfactorily described by pseudo-first and pseudo-second order kinetic models, it is very well reflected by a family of dynamic adsorption models, which are modelled with a single logistic function. Internal diffusion is likely the rate limiting step during adsorption on ATPC, while external and internal diffusion likely plays a role in adsorption to GAC. Although microwave-assisted regeneration is performed in a general purpose microwave reactor, both adsorbents show excellent performance and are very good candidates for the adsorption process. Preliminary results show that magnetite can further reduce microwave energy consumption.
Go to article

Authors and Affiliations

Tomasz Kotkowski
1
ORCID: ORCID
Robert Cherbański
1
ORCID: ORCID
Eugeniusz Molga
1
ORCID: ORCID

  1. Chemical and Process Engineering Department, Warsaw University of Technology, ul. Warynskiego 1, 00-645 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a method of optical fluorescence analysis for the evaluation of homogeneity of multicomponent grain mixtures. This method is based on the evaluation of the content of fluorescent marker. Maize with two degrees of fineness d1 = 1:25 mm and d2 = 2:00 mm was used as a tracer. Maize was covered with Rhodamine B, which emits red light under the influence of ultraviolet radiation. The tracer was introduced into the mixture before the mixing process began. Nine multicomponent grain mixtures were used. The proportion of fluorescent maize was evaluated on the basis of computer image analysis. Additionally, the fraction of the tracer was evaluated using a control method (validation of the accuracy of the proposed method). The results indicate that the degree of the tracer’s fineness influences the results obtained. The use of fluorescent maize with particle size d2 = 2:00 mm allowed to obtain results which differed less from the control method. The average size of the difference in results ranged from 0.20–0.38 for the 2.00 mm tracer and 0.38–1.34 for the 1.25 mm tracer.
Go to article

Authors and Affiliations

Dominika B. Matuszek
1
Jolanta B. Królczyk
2

  1. Opole University of Technology, Faculty of Production Engineering and Logistics, Department of Biosystems Engineering and Chemical Processes, Mikolajczyka 5, 45-271 Opole, Poland
  2. Opole University of Technology, Faculty of Mechanical Engineering, Department of Manufacturing and Materials Engineering, Mikolajczyka 5, 45-271 Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

Although the study of oscillatory motion has a long history, going back four centuries, it is still an active subject of scientificr esearch. In this review paper prospective research directions in the field of mechanical vibrations were pointed out. Four groups of important issues in which advanced research is conducted were discussed. The first are energy harvester devices, thanks to which we can obtain or save significant amounts of energy, and thus reduce the amount of greenhouse gases. The next discussed issue helps in the design of structures using vibrations and describes the algorithms that allow to identify and search for optimal parameters for the devices being developed. The next section describes vibration in multi-body systems and modal analysis, which are key to understanding the phenomena in vibrating machines. The last part describes the properties of granulated materials from which modern, intelligent vacuum-packed particles are made. They are used, for example, as intelligent vibration damping devices.
Go to article

Bibliography

  1.  K. Di et al., “Dielectric elastomer generator for electromechanical energy conversion: A mini review,” Sustainability, vol. 13, p. 9881, 2021, doi: 10.3390/su13179881.
  2.  D. Wang, J. Mo, X. Wang, H. Ouyang, and Z. Zhou, “Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration,” Energy Convers. Manage., vol. 171, pp. 1134–1149, 2018, doi: 10.1016/ j.enconman.2018.06.052.
  3.  A. Anand, S. Naval, P.K. Sinha, N.K. Das, and S. Kundu, “Effects of coupling in piezoelectric multi-beam structure,” Microsyst. Technol., vol. 26, no. 4, pp. 1235–1252, 2019, doi: 10.1007/s00542-019-04653-3.
  4.  A. Anand and S. Kundu, “Design of a spiral-shaped piezoelectric energy harvester for powering pacemakers,” Nanomater. Energy, vol. 8, no. 2, pp. 139–150, 2019, doi: 10.1680/jnaen.19.00016.
  5.  S.B. Ayed, A. Abdelkefi, F. Najar, and M.R. Hajj, “Design and performance of variable-shaped piezoelectric energy harvesters,” J. Intell. Mater. Syst. Struct., vol. 25, no. 2, pp. 174– 186, 2013, doi: 10.1177/1045389x13489365.
  6.  S. Kundu and H.B. Nemade, “Piezoelectric vibration energy harvester with tapered substrate thickness for uniform stress,” Microsyst. Technol., vol. 27, no. 1, pp. 105–113, 2020, doi: 10.1007/s00542-020-04922-6.
  7.  S. Paquin and Y. St-Amant, “Improving the performance of a piezoelectric energy harvester using a variable thickness beam,” Smart Mater. Struct., vol. 19, no. 10, p. 105020, 2010, doi: 10.1088/0964-1726/19/10/105020.
  8.  J. Zhang, X. Xie, G. Song, G. Du, and D. Liu, “A study on a near-shore cantilevered sea wave energy harvester with a variable cross section,” Energy Sci. Eng., vol. 7, no. 6, pp. 3174– 3185, 2019, doi: 10.1002/ese3.489.
  9.  R. Hosseini and M. Nouri, “Shape design optimization of unimorph piezoelectric cantilever energy harvester,” J. Comput. Appl. Mech., vol. 47, no. 2, 2016, doi: 10.22059/jcamech.2017. 224975.126.
  10.  A. Anand, S. Pal, and S. Kundu, “Bandwidth and power enhancement in the MEMS based piezoelectric energy harvester using magnetic tip mass,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e137509, 2022, doi: 10.24425/bpasts.2021.137509.
  11.  X. Li et al., “Investigation to the influence of additional magnets positions on four magnet bi-stable piezoelectric energy harvester,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e140151, 2022, doi: 10.24425/bpasts.2022.140151.
  12.  P. Yingyong, P. Thainiramit, S. Jayasvasti, N. ThanachIssarasak, and D. Isarakorn, “Evaluation of harvesting energy from pedestrians using piezoelectric floor tile energy harvester,” Sens. Actuators A, vol. 331, p. 113035, 2021, doi: 10.1016/j.sna. 2021.113035.
  13.  P. Firoozy, S.E. Khadem, and S.M. Pourkiaee, “Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam,” Int. J. Eng. Sci., vol. 111, pp. 113–133, 2017, doi: 10.1016/j.ijengsci.2016.11.006.
  14.  Y. Wu, J. Qiu, S. Zhou, H. Ji, Y. Chen, and S. Li, “A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting,” Appl. Energy, vol. 231, pp. 600–614, 2018, doi: 10.1016/j.apenergy.2018. 09.082.
  15.  J. He et al., “Triboelectric piezoelectric electromagnetic hybrid nanogenerator for high efficient vibration energy harvesting and self powered wireless monitoring system,” Nano Energy, vol. 43, pp. 326–339, 2018, doi: 10.1016/j.nanoen.2017.11.039.
  16.  D. Zhu, S. Roberts, M.J. Tudor, and S.P. Beeby, “Design and experimental characterization of a tunable vibration-based electromagnetic micro- generator,” Sens. Actuators A, vol. 158, no. 2, pp. 284–293, Mar. 2010, doi: 10.1016/j.sna.2010.01.002.
  17.  W.-J. Su, J. Zu, and Y. Zhu, “Design and development of a broadband magnet-induced dual-cantilever piezoelectric energy harvester,” J. Intell. Mater. Syst. Struct., vol. 25, no. 4, pp. 430–442, Aug. 2013, doi: 10.1177/1045389x13498315.
  18.  D. Guo, X.F. Zhang, H. Y. Li, and H. Li, “Piezoelectric energy harvester array with magnetic tip mass,” in Volume 4B: Dynamics, Vibration, and Control. American Society of Mechanical Engineers, Nov. 2015, doi: 10.1115/imece2015-51044.
  19.  M. Ostrowski, B. Błachowski, M. Bocheński, D. Piernikarski, P. Filipek, and W. Janicki, “Design of nonlinear electromagnetic energy harvester equipped with mechanical amplifier and spring bumpers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 6, pp. 1373–1383, 2020, doi: 10.24425/BPASTS.2020.135384.
  20.  S.-C. Kim, J.-G. Kim, Y.-C. Kim, S.-J. Yang, and H. Lee, “A study of electromagnetic vibration energy harvesters: Design optimization and experimental validation,” Int. J. Precis. Eng. Manuf. Green Technol., vol. 6, no. 4, pp. 779–788, Jul. 2019, doi: 10.1007/s40684-019- 00130-4.
  21.  X. Wang et al., “Similarity and duality of electromagnetic and piezoelectric vibration energy harvesters,” Mech. Syst. Sig. Process., vol. 52-53, pp. 672–684, Feb. 2015, doi: 10.1016/j.ymssp.2014.07.007.
  22.  K. Kecik, A. Mitura, S. Lenci, and J. Warminski, “Energy harvesting from a magnetic levitation system,” Int. J. Non Linear Mech., vol. 94, pp. 200–206, Sep. 2017, doi: 10.1016/j.ijnon linmec.2017.03.021.
  23.  A. Preumont, Mechatronics – Dynamics of Electromechanical and Piezoelectric Systems. Springer Netherlands, 2006, doi: 10.1007/1-4020- 4696-0.
  24.  I. Shahosseini and K. Najafi, “Mechanical amplifier for translational kinetic energy harvesters,” J. Phys. Conf. Ser., vol. 557, p. 012135, Nov. 2014, doi: 10.1088/1742-6596/557/1/012135.
  25.  H. Fu, S. Theodossiades, B. Gunn, I. Abdallah, and E. Chatzi, “Ultra-low frequency energy harvesting using bi-stability and rotary-translational motion in a magnet-tethered oscillator,” Nonlinear Dyn., vol. 101, no. 4, pp. 2131–2143, Sep. 2020, doi: 10.1007/s11071-020-05889-9.
  26.  H. Zhang, L. R. Corr, and T. Ma, “Issues in vibration energy harvesting,” J. Sound Vib., vol. 421, pp. 79–90, May 2018, doi: 10.1016/j. jsv.2018.01.057.
  27.  M. Mösch, G. Fischerauer, and D. Hoffmann, “A self-adaptive and self-sufficient energy harvesting system,” Sensors, vol. 20, no. 9, p. 2519, Apr. 2020, doi: 10.3390/s20092519.
  28.  M. Ostrowski, B. Blachowski, B. Poplawski, D. Pisarski, G. Mikulowski, and L. Jankowski, “Semi-active modal control of structures with lockable joints: general methodology and applications,” Struct. Control Health Monit., vol. 28, no. 5, p. e2710, Feb. 2021, doi: 10.1002/ stc.2710.
  29.  Y. Zhao, M. Alashmori, F. Bi, and X. Wang, “Parameter identification and robust vibration control of a truck driver’s seat system using multi- objective optimization and genetic algorithm,” Applied Acoustics, vol. 173, p. 107697, 2021, doi: 10.1016/j.apacoust.2020.107697.
  30.  S.S. Kessler, S. Spearing, M.J. Atalla, C.E. Cesnik, and C. Soutis, “Damage detection in composite materials using frequency response methods,” Composites Part B, vol. 33, no. 1, pp. 87–95, 2002, doi: 10.1016/S1359-8368(01)00050-6.
  31.  R. Hou and Y. Xia, “Review on the new development of vibration-based damage identification for civil eng. struct.: 2010– 2019,” J. Sound Vib., vol. 491, p. 115741, 2021, doi: 10.1016/ j.jsv.2020.115741.
  32.  K. Dziedziech, P. Czop, W.J. Staszewski, and T. Uhl, “Combined non-parametric and parametric approach for identification of time-variant systems,” Mech. Syst. Sig. Process., vol. 103, pp. 295–311, 2018, doi: 10.1016/j.ymssp.2017.10.020.
  33.  A. Abusoua and M. F. Daqaq, “On using a strong high-frequency excitation for parametric identification of nonlinear systems,” J. Vib. Acoust., vol. 139, no. 5, p. 051012, 2017, doi: 10.1115/ 1.4036504.
  34.  B. Zhu, Y. Dong, and Y. Li, “Nonlinear dynamics of a viscoelastic sandwich beam with parametric excitations and internal resonance,” Nonlinear Dyn., vol. 94, no. 4, pp. 2575–2612, 2018, doi: 10.1007/s11071-018-4511-8.
  35.  F. Beltran-Carbajal and G. Silva-Navarro, “Generalized nonlinear stiffness identification on controlled mechanical vibrating systems,” Asian J. Control, vol. 21, no. 3, pp. 1281–1292, 2018, doi: 10.1002/asjc.1807.
  36.  B.S. Razavi, M.R. Mahmoudkelayeh, and S.S. Razavi, “Damage identification under ambient vibration and unpredictable signal nature,” J. Civ. Struct. Health Monit., vol. 11, no. 5, pp. 1253–1273, 2021, doi: 10.1007/s13349-021-00503-x.
  37.  A.C. Altunıs¸ık, F.Y. Okur, and V. Kahya, “Modal parameter identification and vibration based damage detection of a multiple cracked cantilever beam,” Eng. Fail. Anal., vol. 79, pp. 154–170, 2017, doi: 10.1016/j.engfailanal.2017.04.026.
  38.  K. Ciecieląg, A. Skoczylas, J. Matuszak, K. Zaleski, and K. Kęcik, “Defect detection and localization in polymer composites based on drilling force signal by recurrence analysis,” Measurement, vol. 186, p. 110126, 2021, doi: 10.1016/j.measurement.2021.110126.
  39.  M. Bowkett and K. Thanapalan, “Comparative analysis of failure detection methods of composites materials’ systems,” Syst. Sci. Control Eng., vol. 5, no. 1, pp. 168–177, 2017, doi: 10.1080/ 21642583.2017.1311240.
  40.  D. Cekus, P. Kwiatoń, M. Šofer, and P. Šofer, “Application of heuristic methods to identification of the parameters of discretecontinuous models,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e140150, 2022, doi: 10.24425/bpasts.2022.140150.
  41.  S. Garus, W. Sochacki, M. Kubanek, and M. Nabiałek, “Minimizing the number of layers of the quasi one-dimensional phononic structures,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e139394, 2022, doi: 10.24425/bpasts.2021.139394.
  42.  A. Cancelli, S. Laflamme, A. Alipour, S. Sritharan, and F. Ubertini, “Vibration-based damage localization and quantification in a pretensioned concrete girder using stochastic subspace identification and particle swarm model updating,” Struct. Health Monit., vol. 19, no. 2, pp. 587–605, 2019, doi: 10.1177/1475 921718820015.
  43.  S. Barman, M. Mishra, D. Maiti, and D. Maity, “Vibration-based damage detection of structures employing bayesian data fusion coupled with TLBO optimization algorithm,” Struct. Multidiscip. Optim., vol. 64, pp. 2243–2266, 2021, doi: 10.1007/s00158021-02980-6.
  44.  S. Das, S. Mondal, and S. Guchhait, “Particle swarm optimization-based characterization technique of nonproportional viscous damping parameter of a cantilever beam,” J. Vib. Control, p. 107754632110105, 2021, doi: 10.1177/1077546321101 0526.
  45.  R. Zenzen, I. Belaidi, S. Khatir, and M. A. Wahab, “A damage identification technique for beam-like and truss structures based on frf and bat algorithm,” Comptes Rendus Mécanique, vol. 346, pp. 1253–1266, 2018, doi: 10.1016/j.crme.2018.09.003.
  46.  M.-S. Huang, M. Gül, and H.-P. Zhu, “Vibration-based structural damage identification under varying temperature effects,” J. Aerosp. Eng., vol. 31, no. 3, p. 04018014, 2018, doi: 10.1061/(asce)as.1943-5525.0000829.
  47.  Y. Zhang, Y. Miyamori, S. Mikami, and T. Saito, “Vibrationbased structural state identification by a 1-dimensional convolutional neural network,” Comput.-Aided Civ. Infrastruct. Eng., vol. 34, no. 9, pp. 822–839, 2019, doi: 10.1111/mice.12447.
  48.  H. Nick and A. Aziminejad, “Vibration-based damage identification in steel girder bridges using artificial neural network under noisy conditions,” J. Nondestr. Eval., vol. 40, no. 1, p. 15, 2021, doi: 10.1007/s10921-020-00744-8.
  49.  Y. Yang, C. Dorn, C. Farrar, and D. Mascareñas, “Blind, simultaneous identification of full-field vibration modes and large rigid-body motion of output-only structures from digital video measurements,” Eng. Struct., vol. 207, p. 110183, 2020, doi: 10.1016/j.engstruct.2020.110183.
  50.  Z. Fu and J. He, Modal analysis, ser. 1st edition. Delhi, Oxford: Butterworth-Heinemann, 2001.
  51.  R. Craig and A. Kurdila, Fundamentals of Struct. Dyn., ser. 2nd edition. Hoboken, New Jersey: Wiley, 2006.
  52.  D. de Klerk, D.J. Rixen, and S.N. Voormeeren, “General framework for dynamic substructuring: History, review and classification of techniques,” AIAA Journal, vol. 46, no. 5, pp. 1169–1181, 2008, doi: 10.2514/1.33274.
  53.  J. Roy Craig, Coupling of substructures for dynamic analyses – An overview, 2000, doi: 10.2514/6.2000-1573.
  54.  A. Shabana, Dynamics of Multibody Systems, ser. 4th edition. Cambridge, Chicago: Cambridge University Press, 2013.
  55.  B. Rong, X. Rui, L. Tao, and G. Wang, “Theoretical modeling and numerical solution methods for flexible multibody system dynamics,” Nonlinear Dyn., vol. 98, p. 1519–1553, 2019, doi: 10.1007/s11071-019-05191-3.
  56.  V. Sonneville, M. Scapolan, M. Shan, and O. Bauchau, “Modal reduction procedures for flexible multibody dynamics,” Multibody Sys.Dyn., vol. 51, pp. 377–418, 2021, doi: 10.1007/s11044020-09770-w.
  57.  J. Kim, J. Han, H. Lee, and S. Kim, “Flexible multibody dynamics using coordinate reduction improved by dynamic correction,” Multibody Sys.Dyn., vol. 42, pp. 411–429, 2018, doi: 10.1007/s11044-017-9607-2.
  58.  A. Cammarata, “Global modes for the reduction of flexible multibody systems,” Multibody Sys.Dyn., vol. 53, pp. 59–83, 2021, doi: 10.1007/ s11044-021-09790-0.
  59.  Y. Tang, H. Hu, and Q. Tian, “Model order reduction based on successively local linearizations for flexible multibody dynamics,” Int. J. Numer. Methods Eng., vol. 118, no. 3, pp. 159–180, 2019, doi: 10.1002/nme.6011.
  60.  I. Palomba and R. Vidoni, “Flexible-link multibody system eigenvalue analysis parameterized with respect to rigid-body motion,” Applied Sciences, vol. 9, no. 23, p. 5156, 2019, doi: 10.3390/app9235156.
  61.  K. Worden and P. Green, “A machine learning approach to nonlinear modal analysis,” Mech. Syst. Sig. Process., vol. 84, pp. 34–53, 2017, doi: 10.1016/j.ymssp.2016.04.029.
  62.  G. Kerschen, Modal Analysis of Nonlinear Mechanical Systems, ser. CISM International Centre for Mechanical Sciences. Vienna, Udine: Springer, 2014.
  63.  G. Kerschen, M. Peeters, J. C. Golinval, and C. Stéphan, “Nonlinear modal analysis of a full-scale aircraft,” Journal of Aircraft, vol. 50, no. 5, pp. 1409–1419, 2013, doi: 10.2514/1.C031918.
  64.  A. Albu-Schäffer and C. Della Santina, “A review on nonlinear modes in conservative mechanical systems,” Annu. Rev. Control, vol. 50, pp. 49–71, 2020, doi: 10.1016/j.arcontrol.2020.10.002.
  65.  W. Heylen, S. Lammens, and P. Sas, Modal Analysis Theory and Testing, ser. 1st edition. Heverlee, Belgium: Katholieke Universiteit Leuven, 2007.
  66.  E. Orlowitz and A. Brandt, “Comparison of experimental and operational modal analysis on a laboratory test plate,” Measurement, vol. 102, pp. 121–130, 2017, doi: 10.1016/j.measurement. 2017.02.001.
  67.  F. Zahid, Z. Ong, and S. Khoo, “A review of operational modal analysis techniques for in-service modal identification,” J. Braz. Soc. Mech. Sci. Eng., vol. 42, p. 398, 2020, doi: 10.1007/s40430020-02470-8.
  68.  D. Montanari, A. Agostini, M. Bonini, G. Corti, and C. Ventisette, “The use of empirical methods for testing granular materials in analogue modelling,” Materials, vol. 10, no. 6, p. 635, Jun. 2017, doi: 10.3390/ma10060635.
  69.  B. Kou et al., “Granular materials flow like complex fluids,” Nature, vol. 551, no. 7680, pp. 360–363, Nov. 2017, doi: 10.1038/ nature24062.
  70.  C. Sandeep and K. Senetakis, “Effect of young’s modulus and surface roughness on the inter-particle friction of granu lar materials,” Materials, vol. 11, no. 2, p. 217, Jan. 2018, doi: 10.3390/ma11020217.
  71.  A. Wautier et al., “Multiscale modelling of granular materials in boundary value problems accounting for mesoscale mechanisms,” Comput. Geotech., vol. 134, p. 104143, 2021, doi: 10.1016/j.compgeo.2021.104143.
  72.  G. Recchia, H. Cheng, V. Magnanimo, and L. La Ragione, “Failure in granular materials based on acoustic tensor: a numerical analysis,” EPJ Web Conf. Powders and Grains, vol. 249, p. 10005, 2021.
  73.  J. Irazábal, F. Salazar, and E. Oñate, “Numerical modelling of granular materials with spherical discrete particles and the bounded rolling friction model. Application to railway ballast,” Comput. Geotech., vol. 85, pp. 220–229, 2017, doi: 10.1016/ j.compgeo.2016.12.034.
  74.  S. Zhao, T.M. Evans, and X. Zhou, “Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects,” Int. J. Solids Struct., vol. 150, pp. 268–281, 2018, doi: 10.1016/j.ijsolstr.2018.06.024.
  75.  Z. Nie, C. Fang, J. Gong, and Z. Liang, “Dem study on the effect of roundness on the shear behaviour of granular materials,” Comput. Geotech., vol. 121, p. 103457, 2020, doi: 10.1016/ j.compgeo.2020.103457.
  76.  J. Huang, S. Hu, S. Xu, and S. Luo, “Fractal crushing of granular materials under confined compression at different strain rates,” Int. J. Impact Eng., vol. 106, pp. 259–265, 2017, doi: 10.1016/ j.ijimpeng.2017.04.021.
  77.  S. Larsson, J.M.R. Prieto, G. Gustafsson, H.-Å. Häggblad, and P. Jonsén, “The particle finite element method for transient granular material flow: modelling and validation,” Comput. Part. Mech., vol. 8, no. 1, pp. 135–155, Feb. 2020, doi: 10.1007/ s40571-020-00317-6.
  78.  C. Zhai, E. Herbold, S. Hall, and R. Hnourley, “Particle rotations and energy dissipation during mechanical compression of granular materials,” J. Mech. Phys. Solids, vol. 129, pp. 19–38, 2019, doi: 10.1016/j.jmps.2019.04.018.
  79.  S. Liu, Z. Nie, W. Hu, J. Gong, and P. Lei, “Effect of parti cle type on the shear behaviour of granular materials,” Particuology, vol. 56, pp. 124–131, 2021, doi: 10.1016/j.partic.2020. 11.001.
  80.  W. Fei, G.A. Narsilio, J.H. van der Linden, and M.M. Disfani, “Quantifying the impact of rigid interparticle structures on heat transfer in granular materials using networks,” Int. J. Heat Mass Transfer, vol. 143, p. 118514, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.118514.
  81.  A.M. Druckrey, K.A. Alshibli, and R.I. Al-Raoush, “Discrete particle translation gradient concept to expose strain localisation in sheared granular materials using 3d experimental kinematic measurements,” Géotechnique, vol. 68, no. 2, pp. 162–170, Feb. 2018, doi: 10.1680/ jgeot.16.p.148.
  82.  R. Gupta, S. Salager, K. Wang, and W. Sun, “Open-source support toward validating and falsifying discrete mechanics models using synthetic granular materials – part i: Experimental tests with particles manufactured by a 3d printer,” Acta Geotech., vol. 14, no. 4, pp. 923–937, Jul. 2018, doi: 10.1007/s11440-0180703-0.
  83.  Y. Sun, S. Nimbalkar, and C. Chen, “Particle breakage of granular materials during sample preparation,” J. Rock Mech. Geotech. Eng., vol. 11, no. 2, pp. 417–422, 2019, doi: 10.1016/j.jrmge.2018.12.001.
  84.  T. Sweijen, B. Chareyre, S. Hassanizadeh, and N. Karadimitriou, “Grain-scale modelling of swelling granular materials; application to super absorbent polymers,” Powder Technol., vol. 318, pp. 411–422, 2017, doi: 10.1016/j.powtec.2017.06.015.
  85.  H. M. Beakawi Al-Hashemi and O.S. Baghabra Al-Amoudi, “A review on the angle of repose of granular materials,” Powder Technol., vol. 330, pp. 397–417, 2018, doi: 10.1016/j.powtec.2018.02.003.
  86.  P. Bartkowski, H. Bukowiecki, F. Gawiński, and R. Zalewski, “Adaptive crash energy absorber based on a granular jamming mechanism,” Bull. Pol. Acad. Sci. Tech. Sci., p. e139002, 2021.
  87.  P. Bartkowski, R. Zalewski, and P. Chodkiewicz, “Parameter identification of bouc-wen model for vacuum packed particles based on genetic algorithm,” Arch. Civ. Mech. Eng., vol. 19, no. 2, pp. 322–333, 2019, doi: 10.1016/j.acme.2018. 11.002.
  88.  P. Bartkowski, G. Suwała, and R. Zalewski, “Temperature and strain rate effects of jammed granular systems: experiments and modelling,” Granular Matter, vol. 23, no. 4, p. 79, Aug. 2021, doi: 10.1007/s10035-021-01138-x.
Go to article

Authors and Affiliations

Sebastian Garus
1
ORCID: ORCID
Bartłomiej Błachowski
2
ORCID: ORCID
Wojciech Sochacki
1
ORCID: ORCID
Anna Jaskot
3
ORCID: ORCID
Paweł Kwiatoń
1
ORCID: ORCID
Mariusz Ostrowski
2
ORCID: ORCID
Michal Šofer
4
ORCID: ORCID
Tomasz Kapitaniak
5
ORCID: ORCID

  1. Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Poland
  2. Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland
  3. Faculty of Civil Engineering, Czestochowa University of Technology, Poland
  4. Faculty of Mechanical Engineering, VŠB – Technical University of Ostrava, Czech Republic
  5. Division of Dynamics, Lodz University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper provides statistical analysis of the photographs of four various granular materials (peas, pellets, triticale, wood chips). For analysis, the (parametric) ANOVA and the (nonparametric) Kruskal-Wallis tests were applied. Additionally, the (parametric) two-sample t-test and (non-parametric) Wilcoxon Rank-Sum Test for pairwise comparisons were performed. In each case, the Bonferroni correction was used. The analysis shows a statistical evidence of the presence of differences between the respective average discrete pixel intensity distributions (PID), induced by the histograms in each group of photos, which cannot be explained only by the existing differences among single granules of different materials. The proposed approach may contribute to the development of a fast inspection method for comparison and discrimination of granular materials differing from the reference material, in the production process.

Go to article

Authors and Affiliations

Artur Wójcik
Piotr Kościelniak
Marcin Mazur
Thomas G. Mathia
Download PDF Download RIS Download Bibtex

Abstract

A two-scale numerical homogenization approach was used for granular materials. At small-scale level, granular micro-structure was simulated using the discrete element method. At macroscopic level, the finite element method was applied. An up-scaling technique took into account a discrete model at each Gauss integration point of the FEM mesh to derive numerically an overall constitutive response of the material. In this process, a tangent operator was generated with the stress increment corresponding to the given strain increment at the Gauss point. In order to detect a loss of the solution uniqueness, a determinant of the acoustic tensor associated with the tangent operator was calculated. Some elementary geotechnical tests were numerically calculated using a combined DEM-FEM technique.

Go to article

Authors and Affiliations

M. Nitka
J. Tejchman
Download PDF Download RIS Download Bibtex

Abstract

In this work, sorption of chromium on granular ferric hydroxide (GFH) has been investigated using batch and column techniques. The adsorption behavior of Cr on GFH, depending on pH, contact lime and sorbent amount were studied. The equilibrium adsorption capacity of GFH for Cr was measured and cxtrapo latcd using Freundlich isotherms. Metal ions bounded lo the GFH could be recovered by alkaline solution, and the GFH can be recycled. The sorption capacity of GFH was 25.0 mg/g. The ion exchange of chromium on GFH follows pseudo-first-order kinetics. The intraparticlc diffusion of chromium on GFH presents the limiting rate. The results indicated practical value of this method for industry and also provide strong evidence to support the proposed thesis about the adsorption mechanism.
Go to article

Authors and Affiliations

Bai Yuan
Bronisław Bartkiewicz
Download PDF Download RIS Download Bibtex

Abstract

This paper concerns the problem of empirical investigation and mathematical modelling of a novel controllable damper using vacuum packed particles. Vacuum packed particles tend to be placed among the group of so-called ‘smart structures’. The macroscopic mechanical features of such structures can be controlled by the partial vacuum parameter. The authors consider an application of Bouc-Wen model in order to represent the dynamic behaviour of the investigated device. The verification of the model response with experimental data is discussed. The Bouc-Wen model parameters identification is described.
Go to article

Authors and Affiliations

Anna Mackojc
1
ORCID: ORCID
Bogumil Chilinski
1
ORCID: ORCID
Robert Zalewski
1
ORCID: ORCID

  1. Institute of Machine Design Fundamentals, Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, we performed the qualitative analysis of exoproteins during granule formation in the pres- ence or in the absence of cations. The staining of thin granule cryosections showed that nucleic acids, proteins, polysaccharides and calcium cations were the dominant components of the granules. Proteins are the structural components associated with calcium ions. We determined changes in the proteomic profile and tightly bound extracellular polymeric substances (EPS) of the slime. The exopolymeric matrix containing the proteins was extracted using the Dowex resin method. Proteomic profile was analysed by SDS-PAGE method (sodium dodecyl sulphate polyacrylamide gel electrophoresis) using Coomassie blue staining in the samples of the aerobic granule matrix formed in the presence of multivalent cations and compared with that of the aerobic granules cultivated without cations. The results indicate that the granule matrix is predominantly composed of large and complex proteins that are tightly bound within the granular structure. The tightly bound extracellular polymeric substances (TB-EPS) may play a role in improved mechanical stability of aerobic granules. In the supernatant fraction of the sludge, only a small amount of free proteins in the medium molecular mass range was detected. The protein with high molecular mass ( 116 kDa) produced in the reactors with added Ca2+. Ca2+ had a considerable regulatory influence on production of extracellular proteins during aerobic granulation.
Go to article

Authors and Affiliations

Beata Kończak
1
Korneliusz Miksch
2

  1. Department ofWater Protection, Central Mining Institute, Pl. Gwarków 1, 40-166 Katowice, Poland
  2. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more