Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper elucidated the potential of electron backscatter diffraction analysis for ground granulated blast furnace slag geopolymers at 1000°C heating temperature. The specimen was prepared through the mechanical ground with sandpaper and diamond pad before polished with diamond suspension. By using advanced technique electron backscatter diffraction, the microstructure analysis and elemental distribution were mapped. The details on the crystalline minerals, including gehlenite, mayenite, tobermorite and calcite were easily traced. Moreover, the experimental Kikuchi diffraction patterns were utilized to generate a self-consistent reference for the electron backscatter diffraction pattern matching. From the electron backscatter diffraction, the locally varying crystal orientation in slag geopolymers sample of monoclinic crystal observed in hedenbergite, orthorhombic crystal in tobermorite and hexagonal crystal in calcite at 1000°C heating temperature.
Go to article

Authors and Affiliations

Ikmal Hakem Aziz
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
2
ORCID: ORCID
Mohd Arif Anuar Mohd Salleh
2
ORCID: ORCID
Sorachon Yoriya
3
ORCID: ORCID
Rafiza Abd Razak
4
ORCID: ORCID
Rosnita Mohamed
1
ORCID: ORCID
Madalina Simona Baltatu
5
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellence (CEGeoGTech), Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
  3. National Metal and Material Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114, Thailand Science Park, Pahonyothin Rd., Khlong 1, Khlong Luang, Pathum Thani 12120, Thailand
  4. Department of Civil Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02100 Padang Besar, Perlis, Malaysia
  5. Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, 700050, Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

This study explores the influence of alkali activators on the initiation of polymerization reaction of alumino-silicate minerals present in class-F fly ash material. Different types of fly ash aggregates were produced with silicate rich binders (bentonite and metakaolin) and the effect of alkali activators on the strength gain properties were analyzed. A comprehensive examination on its physical and mechanical properties of the various artificial fly ash aggregates has been carried out systematically. A pelletizer machine was fabricated in this study to produce aggregate pellets from fly ash. The efficiency and strength of pellets was improved by mixing fly ash with different binder materials such as ground granulated blast furnace slag (GGBS), metakaolin and bentonite. Further, the activation of fly ash binders was done using sodium hydroxide for improving its binding properties. Concrete mixes were designed and prepared with the different fly ash based aggregates containing different ingredients. Hardened concrete specimens after sufficient curing was tested for assessing the mechanical properties of different types concrete mixes. Test results indicated that fly ash -GGBS aggregates (30S2‒100) with alkali activator at 10M exhibited highest crushing strength containing of 22.81 MPa. Similarly, the concrete mix with 20% fly ash-GGBS based aggregate reported a highest compressive strength of 31.98 MPa. The fly ash based aggregates containing different binders was found to possess adequate engineering properties which can be suggested for moderate construction works.

Go to article

Authors and Affiliations

P. Gomathi
A. Sivakumar
Download PDF Download RIS Download Bibtex

Abstract

The article analyzes the influence of selected factors on the activity rate of cement binder containing 50% of ground granulated blast furnace slag in its composition. These factors are the chemical and mineral composition of Portland cement CEM I, the degree of grinding of granulated blast furnace slag and Portland cement, and the water/binder ratio. This slag content is characteristic for blast furnace cement CEM III/A. In addition to the application effects, this type of cement is a low-carbon binder (there is a reduction of CO 2 emissions by about 45% compared to Portland cement CEM I). The use of this type of cement in the composition of concrete enables the obtaining of concrete with a very small carbon footprint. Based on the results of our own research, it was found that such a high proportion of ground granulated blast furnace slag in the binder composition leads to a significant reduction in the early compressive strength of standard mortars (after two and seven days of setting). This results in a significant reduction in the use of these types of binders (cements) in selected areas of construction, e.g. prefabrication and high-strength concrete. Analyzing the obtained results of their own research, the authors concluded that the early strength of these types of binders can be significantly improved by increasing the specific surface area (degree of grinding) of Portland cement CEM I and lowering the water/slag ratio (w/s, where: s = cement + slag). The proposed material and technological modifications also enable the obtaining of higher compressive strength at all tested dates. The strength of the standard (after twenty-eight days and over longer periods) is comparable to or higher than that of Portland cement CEM I.
Go to article

Authors and Affiliations

Arkadiusz Janic
1
ORCID: ORCID
Zbigniew Giergiczny
2
ORCID: ORCID

  1. Technology Centrum Betotech sp. z o.o., Dąbrowa Górnicza, Poland;
  2. Faculty of Civil Engineering Silesian University of Technology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The effects of supplementary cementitious materials (SCM) on the characteristics and internal structure of synthetic aggregate made from ground granulated blast furnace slag are investigated in this study (GGBS). Due to its high pozzolanic activity, GGBS was shown to be superior to other SCM materials, enhancing both the strength and durability of synthetic aggregate. Because sintering uses a lot of energy and generates a lot of pollutants, using a cold-bonded approach to make low density lightweight aggregates is particularly significant from an economic and environmental standpoint. Thus, the utilisation of ground granulated blast furnace slag (GGBS) as a substitute material in the production of green artificial lightweight aggregate (GLA) using the cold bonding method was discussed in this work. Admixtures of ADVA Cast 203 and Hydrogen Peroxide were utilised to improve the quality of GLA at various molar ratios. The freshly extracted GLA was then evaluated for specific gravity, water absorption, aggregate impact, and aggregate crushing in order to determine the optimal proportion blend. As a result, the overall findings offer great application potential in the development of concrete (GCLA). It has been determined that aggregates with a toughness of 14.6% and a hardness of 15.9% are robust. The compressive strength test found that the GCLA has a high strength lightweight concrete of 37.19 MPa and a density of 1845.74 kg/m3. The porous features developed inside the internal structure of GLA have led to GCLA’s less weight compared to conventional concrete.
Go to article

Authors and Affiliations

R.A. Razak
1 2
ORCID: ORCID
M.A. Hassan
1
ORCID: ORCID
M.M.A.B. Abdullah
2
ORCID: ORCID
Z. Yahya
1 2
ORCID: ORCID
M.A.M. Ariffin
3
ORCID: ORCID
A.F.B. Mansor
1
ORCID: ORCID
D.L.C. Hao
1 2
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellence (CEGeoGTech), Perlis, Malaysia
  3. Universiti Teknologi Malaysia, School of Civil Engineering, Faculty of Engineering, Skudai, Johor Bahru, Malaysia

This page uses 'cookies'. Learn more