Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 17
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The objective of the present study was to develop a method for automatic identification of boundaries of maximal complexes on the basis of boundary points of subcomplexes. According 10 the method proposed, regions are to be presented by means of geometric cyclic digraphs. The data on these digraphs are to be recorded in a neighbourhood matrix. The matrix notation, containing supplementary data, provides information sufficient to determine complexes according to the criteria adopted. The paper presents simple algorithms for data processing, enabling to detect data inconsistency.
Go to article

Authors and Affiliations

Elżbieta Lewandowicz
Download PDF Download RIS Download Bibtex

Abstract

The paper is a continuation of the publication under the title “Acoustic diagnostics applications in the study of technical condition of combustion engine” and concerns the detailed description of decision support system for identifying technical condition (type of failure) of specified combustion engine. The input data were measured sound pressure levels of specific faults in comparison to the noise generated by undamaged motor. In the article, the whole procedure of decision method based on game graphs is described, as well as the interface of the program for direct usage.

Go to article

Authors and Affiliations

Adam Deptuła
Piotr Osiński
Urszula Radziwanowska
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the author compares the of characteristics of subsystems obtained by the approximate and exact method in order to answer to the question - if the approximate method can be used to nominate the characteristics of mechatronic systems. Frequency - modal analysis has been presented for a mechanical system, i.e. transverse-vibrating clamped-free beam. Consequently, the model of the beam was presented in a five-vertex hypergraph. This model, in the case of approximate frequency-modal analysis, can be imitated in a three-vertex hypergraph. Such formulation could be the introduction to synthesis of transverse-vibrating complex beam systems with constant cross-section.

Go to article

Authors and Affiliations

Andrzej Buchacz
Download PDF Download RIS Download Bibtex

Abstract

In this paper we propose right-angled Artin groups as a platform for secret sharing schemes based on the efficiency (linear time) of the word problem. Inspired by previous work of Grigoriev-Shpilrain in the context of graphs, we define two new problems: Subgroup Isomorphism Problem and Group Homomorphism Problem. Based on them, we also propose two new authentication schemes. For right-angled Artin groups, the Group Homomorphism and Graph Homomorphism problems are equivalent, and the later is known to be NP-complete. In the case of the Subgroup Isomorphism problem, we bring some results due to Bridson who shows there are right-angled Artin groups in which this problem is unsolvable.

Go to article

Authors and Affiliations

Ramón Flores
Delaram Kahrobaei
Download PDF Download RIS Download Bibtex

Abstract

A gigantic amounts of data and information on molecules that constitute the very complex cell machinery have been collected, classified and stored in data banks. Although we posses enormous amount of knowledge about the properties and functions of thousands of molecular entities, we are still far from understanding how they do work in a living cell. It is clear now that these molecules (genes, proteins) are not autonomous, that there is no direct linear relation between genotype and phenotype, and that the majority of functions are carried and executed by concerted molecular activity, and that the majority of diseases are multifactorial. A basic property of the matter in a living cell (both normal and pathologic) is an interaction between variety of macromolecules, mainly proteins, genes (DNA) etc. In a process of self-organization they are able to form an active molecular biologic system – a complex, labile and dynamic network which integrity is secured by non-covalent bounds. In this essay some basic properties of network structure and the universal rules that govern them are described. Network or system biology is promising new research approach in biology and medicine.

Go to article

Authors and Affiliations

Mieczysław Chorąży
Download PDF Download RIS Download Bibtex

Abstract

A graph G is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest integer k for which such a coloring exists is known as the equitable chromatic number of G and it is denoted by x=( G). In this paper the problem of determining the value of equitable chromatic number for multicoronas of cubic graphs GlH is studied. The problem of ordinary coloring of multicoronas of cubic graphs is solvable in polynomial time. The complexity of equitable coloring problem is an open question for these graphs. We provide some polynomially solvable cases of cubical multicoronas and give simple linear time algorithms for equitable coloring of such graphs which use at most x=( GlH) + 1 colors in the remaining cases.


Go to article

Authors and Affiliations

Hanna Furmańczyk
1
ORCID: ORCID
Marek Kubale
2
ORCID: ORCID

  1. Institute of Informatics, University ofGdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
  2. Department of Algorithms andSystem Modelling, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The results presented here are twofold. First, a heuristic algorithm is proposed which, through removing some unnecessary arcs from a digraph, tends to reduce it into an adjoint and thus simplifies the search for a Hamiltonian cycle. Second, a heuristic algorithm for DNA sequence assembly is proposed, which uses a graph model of the problem instance, and incorporates two independent procedures of reducing the set of arcs - one of them being the former algorithm. Finally, results of tests of the assembly algorithm on parts of chromosome arm 2R of Drosophila melanogaster are presented.

Go to article

Authors and Affiliations

J. Błazewicz
M. Kasprzak
Download PDF Download RIS Download Bibtex

Abstract

The paper aims at the higher reactive power management complexity caused by the access of distributed power, and the problem such as large data exchange capacity, low accuracy of reactive power distribution, a slow convergence rate, and so on, may appear when the controlled objects are large. This paper proposes a reactive power and voltage control management strategy based on virtual reactance cloud control. The coupling between active power and reactive power in the system is effectively eliminated through the virtual reactance. At the same time, huge amounts of data are treated to parallel processing by using the cloud computing model parallel distributed processing, realize the uncertainty transformation between qualitative concept and quantitative value. The power distribution matrix is formed according to graph theory, and the accurate allocation of reactive power is realized by applying the cloud control model. Finally, the validity and rationality of this method are verified by testing a practical node system through simulation.

Go to article

Authors and Affiliations

Wei Min Zhang
Yan Xia Zhang
Download PDF Download RIS Download Bibtex

Abstract

The article is devoted to some critical problems of using Bayesian networks for solving practical problems, in which graph models contain directed cycles. The strict requirement of the acyclicity of the directed graph representing the Bayesian network does not allow to efficiently solve most of the problems that contain directed cycles. The modern theory of Bayesian networks prohibits the use of directed cycles. The requirement of acyclicity of the graph can significantly simplify the general theory of Bayesian networks, significantly simplify the development of algorithms and their implementation in program code for calculations in Bayesian networks..
Go to article

Bibliography

[1] A. Nafalski and A.P. Wibawa, “Machine translation with javanese speech levels’ classification,” Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, vol. 6, no 1, pp 21-25, 2016. https://doi.org/10.5604/20830157.1194260
[2] Z.Omiotek and P. Prokop, “The construction of the feature vector in the diagnosis of sarcoidosis based on the fractal analysis of CT chest images,” Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, vol. 9, no. 2, pp. 16-23, 2019. https://doi.org/10.5604/01.3001.0013.2541
[3] A. Litvinenko, O. Mamyrbayev, N. Litvinenko, A. Shayakhmetova, “Application of Bayesian networks for estimation of individual psychological characteristics,” Przeglad Elektrotechniczny, vol. 95, no. 5, pp. 92-97, 2019
[4] X.Q. Cai, X.Y. Wu, X. Zhou, “Stochastic scheduling subject to breakdown-repeat breakdowns with incomplete information,” Operations Research, vol. 57, no. 5, pp. 1236–1249, 2009. doi: 10.1287/opre.1080.0660
[5] K.W. Fornalski, “The Tadpole Bayesian Model for Detecting Trend Changes in Financial Quotations,” R&R Journal of Statistics and Mathematical Sciences, vol. 2, no. 1, pp. 117–122, 2016.
[6] J. Pearl “Artificial Intelligence Applications”, in How to Do with Probabilities what people say you can't,/ Editor Weisbin C.R., IEEE, North Holland, pp. 6–12, 1985.
[7] J. Pearl “Probabilistic Reasoning in Intelligent Systems”. San Francisco: Morgan Kaufmann Publishers, 1988,
[8] A. Tulupiev “Algebraic Bayesian networks,” in “Logical-probabilistic approach to modeling knowledge bases with uncertainty,” SPb.: SPIIRAS, 2000.
[9] S. Nikolenko, A. Tulupiev “The simplest cycles in Bayesian networks: Probability distribution and the possibility of its contradictory assignment,” SPIIRAS. Edition 2, 2004. vol.1.
[10] F.V. Jensen, T.D. Nielsen “Bayesian Networks and Decision Graphs,” Springer, 2007.
[11] D. Barber, “Bayesian Reasoning and Machine Learning,” 2017, 686 p. http://web4.cs.ucl.ac.uk/ staff/D.Barber/ textbook/020217.pdf
[12] R.E. Neapolitan “Learning Bayesian Networks,” 704p. http://www.cs.technion.ac.il/~dang/books/Learning%20Bayesian%20Networks(Neapolitan,%20Richard).pdf
[13] O. Mamyrbayev, M. Turdalyuly, N. Mekebayev, and et al. “Continuous speech recognition of kazakh language», AMCSE 2018 Int. conf. On Applied Mathematics, Computational Science and Systems Engineering, Rom, Italy, 2019, vol. 24, pp. 1-6.
[14] A. Litvinenko, N. Litvinenko, O. Mamyrbayev, A. Shayakhmetova, M. Turdalyuly “Clusterization by the K-means method when K is unknown,” Inter. Conf. Applied Mathematics, Computational Science and Systems Engineering. Rome, Italy, 2019, vol. 24, pp. 1-6.
[15] O.Ore “Graph theory,” Мoscow: Science, 1980, 336 p.
[16] Ph. Kharari “Graph theory,” Мoscow: Mir, 1973, 300 p.
[17] V. Gmurman “Theory of Probability and Mathematical Statistics: Tutorial,” Moscow: 2003, 479 p.
[18] A.N. Kolmogorov “Theory: Manual,” in “Basic Concepts of Probability,” Moscow: Science, 1974.
[19] N. Litvinenko, A. Litvinenko, O. Mamyrbayev, A. Shayakhmetova “Work with Bayesian Networks in BAYESIALAB,” Almaty: IPIC, 2018, 311 p. (in Rus). ISBN 978-601-332-206-3.

Go to article

Authors and Affiliations

Assem Shayakhmetova
1 2
Natalya Litvinenko
3
Orken Mamyrbayev
1
Waldemar Wójcik
4 5
Dusmat Zhamangarin
6

  1. Institute of Information and Computational Technology, 050010 Almaty, Kazakhstan
  2. Al-Farabi Kazakh National University, Almaty, Kazakhstan
  3. Information and Computational Technology, 050010 Almaty, Kazakhstan
  4. Institute of Information and Computational Technologies CS MES RK, Almaty
  5. Lublin Technical University, Poland
  6. Kazakh University Ways of Communications, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

Leaf - a significant part of the plant, produces food using the process called photosynthesis. Leaf disease can cause damage to the entire plant and eventually lowers crop production. Machine learning algorithm for classifying five types of diseases, such as Alternaria leaf diseases, Bacterial Blight, Gray Mildew, Leaf Curl and Myrothecium leaf diseases, is proposed in the proposed study. The classification of diseases needs front face of leafs. This paper proposes an automated image acquisition process using a USB camera interfaced with Raspberry PI SoC. The image is transmitted to host PC for classification of diseases using online web server. Pre-processing of the acquired image by host PC to obtain full leaf, and later classification model based on SVM is used to detect type diseases. Results were checked with a 97% accuracy for the collection of acquired images.
Go to article

Bibliography

[1] A. Akhtar, A. Khanum, S. A. Khan, and A. Shaukat, “Automated plant disease analysis (apda): performance comparison of machine learning techniques,” in 2013 11th International Conference on Frontiers of Information Technology. IEEE, 2013, pp. 60–65.
[2] M. H. Saleem, J. Potgieter, and K. M. Arif, “Plant disease detection and classification by deep learning,” Plants, vol. 8, no. 11, p. 468, 2019.
[3] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for image classification,” IEEE Transactions on Systems, Man, and Cybernetics, no. 6, pp. 610–621, 1973.
[4] J. Isleib, Signs and symptoms of plant disease, 2019 (accessed February 3, 2019). [Online]. Available: https://www.canr.msu.edu/news/signs and symptoms of plant disease is it fungal viral or bacterial
[5] R. Borges, M. Rossato, M. Santos, M. Ferreira, M. Fonseca, A. Reis, and L. Boiteux, “First report of a leaf spot caused by paramyrothecium roridum on tectona grandis in brazil,” Plant Disease, vol. 102, no. 8, pp. 1661–1661, 2018.
[6] H. K. Mewada, A. V. Patel, and K. K. Mahant, “Concurrent design of active contour for image segmentation using zynq zc702,” Computers & Electrical Engineering, vol. 72, pp. 631–643, 2018.
[7] M. Rzanny, M. Seeland, J. W¨aldchen, and P. M¨ader, “Acquiring and preprocessing leaf images for automated plant identification: understanding the tradeoff between effort and information gain,” Plant methods, vol. 13, no. 1, pp. 1–11, 2017.
[8] D. Vukadinovic and G. Polder, “Watershed and supervised classification based fully automated method for separate leaf segmentation,” in The Netherland Congress on Computer Vision, 2015, pp. 1–2.
[9] C. Niu, H. Li, Y. Niu, Z. Zhou, Y. Bu, and W. Zheng, “Segmentation of cotton leaves based on improved watershed algorithm,” in International Conference on Computer and Computing Technologies in Agriculture. Springer, 2015, pp. 425–436.
[10] L. S. Pinto, A. Ray, M. U. Reddy, P. Perumal, and P. Aishwarya, “Crop disease classification using texture analysis,” in 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, 2016, pp. 825–828.
[11] A. Abraham, R. Falcon, and M. Koeppen, Computational Intelligence in Wireless Sensor Networks: Recent Advances and Future Challenges. Springer, 2017, vol. 676.
[12] S. Hu, H. Wang, C. She, and J. Wang, “Agont: ontology for agriculture internet of things,” in International Conference on Computer and Computing Technologies in Agriculture. Springer, 2010, pp. 131–137.
[13] Y. Shi, Z. Wang, X. Wang, and S. Zhang, “Internet of things application to monitoring plant disease and insect pests,” in 2015 International conference on Applied Science and Engineering Innovation. Atlantis Press, 2015.
[14] A. Kapoor, S. I. Bhat, S. Shidnal, and A. Mehra, “Implementation of iot (internet of things) and image processing in smart agriculture,” in 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS). IEEE, 2016, pp. 21–26.
[15] N. Anantrasirichai, S. Hannuna, and N. Canagarajah, “Automatic leaf extraction from outdoor images,” arXiv preprint arXiv:1709.06437, 2017.
[16] V. Singh and A. K. Misra, “Detection of plant leaf diseases using image segmentation and soft computing techniques,” Information processing in Agriculture, vol. 4, no. 1, pp. 41–49, 2017.
[17] N. P. Singh, R. Kumar, and R. Srivastava, “Local entropy thresholding based fast retinal vessels segmentation by modifying matched filter,” in International Conference on Computing, Communication & Automation. IEEE, 2015, pp. 1166–1170.
[18] E. Hamuda, M. Glavin, and E. Jones, “A survey of image processing techniques for plant extraction and segmentation in the field,” Computers and Electronics in Agriculture, vol. 125, pp. 184–199, 2016.
[19] B.-y. Sun and M.-c. Lee, “Support vector machine for multiple feature classifcation,” in 2006 IEEE International Conference on Multimedia and Expo. IEEE, 2006, pp. 501–504.
[20] S. Arivazhagan, R. N. Shebiah, S. Ananthi, and S. V. Varthini, “Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features,” Agricultural Engineering International: CIGR Journal, vol. 15, no. 1, pp. 211–217, 2013.
[21] S. Arivazhagan, R. Shebiah, S. Ananthi, and S. Varthini, “Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features,” Agricultural Engineering International: CIGR Journal, vol. 15, no. 1, pp. 211–217, 2013.
Go to article

Authors and Affiliations

Hiren Mewada
1
Jignesh Patoliaya
2

  1. Faculty of Electrical Engineering, Prince Mohammad Bin Fahd University, Al Kobhar, Kingdom of Saudi Arabai
  2. Charotar University of Science and Technology, Changa, India
Download PDF Download RIS Download Bibtex

Abstract

The article discusses an example of the use of graph search algorithms with trace of water analysis and aggregation of failures in the occurrence of a large number of failures in the Water Supply System (WSS). In the event of a catastrophic situation, based on the Water Distribution System (WDS) network model, information about detected failures, the condition and location of valves, the number of repair teams, criticality analysis, the coefficient of prioritization of individual network elements, and selected objective function, the algorithm proposes the order of repairing the failures should be analyzed. The approach proposed by the authors of the article assumes the selection of the following objective function: minimizing the time of lack of access to drinking water (with or without prioritization) and minimizing failure repair time (with or without failure aggregation). The algorithm was tested on three different water networks (small, medium, and large numbers of nodes) and three different scenarios (different numbers of failures and valves in the water network) for each selected water network. The results were compared to a valve designation approach for closure using an adjacency matrix and a Strategic Valve Management Model (SVMM).
Go to article

Authors and Affiliations

Ariel Antonowicz
1
ORCID: ORCID
Andrzej Urbaniak
1

  1. Institute of Computing Science, Poznan University of Technology, ul. Piotrowo 2, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

We propose an approach to indirectly learn the Web Ontology Language OWL 2 property characteristics as an explanation for a deep recurrent neural network (RNN). The input is a knowledge graph represented in Resource Description Framework (RDF) and the output are scored axioms representing the characteristics. The proposed method is capable of learning all the characteristics included in OWL 2: functional, inverse functional, reflexive and irreflexive, symmetric and asymmetric, transitive. We report and discuss experimental evaluation on DBpedia 2016-10, showing that the proposed approach has advantages over a simple counting baseline.

Go to article

Authors and Affiliations

J. Potoniec
Download PDF Download RIS Download Bibtex

Abstract

Self-healing grids are one of the most developing concepts applied in electrical engineering. Each restoration strategy requires advanced algorithms responsible for the creation of local power systems. Multi-agent automation solutions dedicated for smart grids are mostly based on Prim’s algorithm. Graph theory in that field also leaves many problems unsolved. This paper is focused on a variation of Prim’s algorithm utility for a multi-sourced power system topology. The logic described in the paper is a novel concept combined with a proposal of a multi-parametrized weight calculation formula representing transmission features of energy delivered to loads present in a considered grid. The weight is expressed as the combination of three elements: real power, reactive power, and real power losses. The proposal of a novel algorithm was verified in a simulation model of a power system. The new restoration logic was compared with the proposal of the strategy presented in other recently published articles. The novel concept of restoration strategy dedicated to multi-sourced power systems was verified positively by simulations. The proposed solution proved its usefulness and applicability.
Go to article

Bibliography

  1.  S.A. Arefifar, Y.A.-R.I. Mohamed, and T.H.M. EL-Fouly, “Comprehensive Operational Planning Framework for Self-Healing Control Actions in Smart Distribution Grids,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4192‒4200, 2013, doi: 10.1109/tpwrs.2013.2259852.
  2.  J. Quiros-Tortos and V. Terzija, “A Graph Theory Based New Approach for Power System Restoration,” in Proc. 2013 IEEE Grenoble PowerTech (POWERTECH), 2013, doi: 10.1109/ptc.2013.6652108.
  3.  T.D. Sudhakar and K.N. Srinivs, “Power System Reconfiguration Based on Prim’s Algorithm,” in Proc. 2011 1st International Conference on Electrical Energy Systems (ICEES), 2011, doi: 10.1109/ICEES.2011.5725295.
  4.  M.M. Ibrahim, H.A. Mostafa, M.M.A. Salama, R. El-Shatshat, and K.B. Shaban, “A Graph-theoretic Service Restoration Algorithm for Power Dystribution Systems,” in Proc. 2018 International Conference on Innovative Trends in Computer Engineering (ITCE), 2018, doi: 10.1109/itce.2018.8316647.
  5.  A. Golshani, W. Sun, and K. Sun, “Advanced power system partitioning method for fast and reliable restoration: toward a self-healing grid,” IET Gener. Transmiss. Distrib., vol. 12, no,1, pp.45‒52, 2018, doi: 10.1049/iet-gtd.2016.1797.
  6.  J. Quiros-Tortos, M. Panteli, P. Wall, and V. Tereija, “Sectionalising methodology for paraller system restoration based on graph theory,” IET Gener. Transmiss. Distrib., vol. 9, no. 11, pp. 1216‒1225, 2015, doi: 10.1049/iet-gtd.2014.0727.
  7.  M. Parol, P. Kapler, J. Marzecki, R. Parol, M. Połecki, and Ł. Rokitnicki, “Effective approach to distributed optimal operation control in rural low voltage microgrids,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 661‒678, 2020, doi: 10.24425/bpasts.2020.134178.
  8.  S. Sannigrahi, S.R. Ghatak, and P. Acharjee, “Multi-objective optimisation-based active distribution system planning with reconfiguration, intermittent RES and DSTATCOM,” IET Renew. Power Gener., vol. 13, no. 13, pp. 2418‒2429, 2019, doi: 10.1049/iet-rpg.2018.6060.
  9.  A. Bonfilio, M. Invernizzi, A. Labella, and R. Procopio, “Design and Implementation of a Variable Synthetic Inertia Controller for Wind Turbine Generators,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 754‒764, 2019, doi: 10.1109/tpwrs.2018.2865958.
  10.  F. Vazinram, R. Effatnejad, M. Hedayati, and P. Hajihosseini, “Decentralised self-healing model for gas and electricity distribution network,” IET Gener. Transmiss. Distrib., vol. 13, no.  19, pp. 4451‒4463, October 2019, doi: 10.1049/iet-gtd.2019.0416.
  11.  M. Eriksson, M. Armendariz, O. Vasilenko, A. Saleem, and L. Nordström, “Multi-Agent Based Distribution Automation Solution for Self-Healing Grids,” IEEE Trans. Ind. Electron., vol.  62, no. 4, pp. 2620‒2628, 2015, doi: 10.1109/tie.2014.2387098.
  12.  J. Li, Reconfiguration of power network based on graph-theoretic algorithms, Graduate Theses and Dissertations, Iowa State University, 2010, pp. 10‒35, doi: 10.31274/etd-180810-2753.
  13.  T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “Section 23.2: The algorithms of Kruscal and Prim” in Introduction to Algorithms, 3rd ed., MIT Press, 2009, pp. 631‒638.
  14.  J. Ansari, A. Gholami, and A. Kazemi, “Multi-agent systems for reactive power control in smart grids,” Int. J. Electr. Power Energy Syst., vol. 83, pp. 411‒425, 2016, doi: 10.1016/j.ijepes.2016.04.010.
  15.  M. Borecki, M. Ciuba, Y. Kharchenko, and Y. Khanas, “Substation reliability evaluation in the context of the stability prediction of power grids,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 769‒776, 2020, doi: 10.24425/bpasts.2020.134170.
  16.  Q. Wang, S. Tao, X. Du, C. Zhong, and Y. Tang, “Coordinating Control Strategy for Multi Micro Energy Systems Within Distribution Grid Considering Dynamic Characteristics and Contradictory Interests,” IEEE Access, vol. 7, pp. 139548‒139559, 2019, doi: 10.1109/ access.2019.2943926.
  17.  Z. Wang and J. Wang, “Self-healing resilient distribution systems based on sectionalization into microgrids,” IEEE Trans. Power Syst., vol. 30, no. 6, pp. 3139‒3149, 2015, doi: 10.1109/tpwrs.2015.2389753.
  18.  W. Bąchorek and M. Benesz, “Analysis of sectionizing switch placement in medium voltage distribution networks in the aspect of improving the continuity of power supply,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 3, pp. 459‒466, 2020, doi: 10.24425/bpasts.2020.133377.
  19.  R.J. Wilson, Introduction to Graph Theory, London, Pearson Education Limited, 2010, pp. 8‒79.
  20.  J.A. Bondy and U.S.R. Murty, Graph theory with applications. London, Citeseer, 1976, pp. 10‒55.
  21.  B.S. Torres, L.R. Ferreira, and A.R. Aoki, “Distributed Intelligent System for Self-Healing in Smart Grids,” IEEE Trans. Power Del., vol. 33, no. 5, pp. 2394‒2403, 2018, doi: 10.1109/tpwrd.2018.2845695.
  22.  X. Yang, Y. Zhang, H. He, S. Ren, and G. Weng, “Real-Time Demand Side Management for a Microgrid Considering Uncertainties,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 3401‒3414, 2019, doi: 10.1109/tsg.2018.2825388.
  23.  A. Younesi, H. Shayeghi, A. Safari, and P. Siano, “Assessing the resilience of multi microgrid based widespread power systems against natural disasters using Monte Carlo Simulation,” Energy, vol. 207, 118220, 2020, doi: 10.1016/j.energy.2020.118220.
  24.  Y. Shen, Y. Chen, J. Zhang, Z. Sang, and Q. Zhou, “Self-Healing Evaluation of Smart Distribution Network Based on Uncertainty Theory,” IEEE Access, vol. 7, pp. 140022‒140029, 2019, doi: 10.1109/access.2019.2939537.
  25.  K. Anoh, S. Maharjan, A. Ikpehai, Y. Zhang, and B. Adebisi, “Energy Peer-to-Peer Trading in Virtual Microgrids in Smart Grids: A Game- Theoretic Approach,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1264‒1275, 2020, doi: 10.1109/tsg.2019.2934830.
  26.  A. Chris and V. Koivunen, “Coalitional Game-Based Cost Optimalization of Energy Portfolio in Smart Grid Communities,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1960‒1970, 2019, doi: 10.1109/TSG.2017.2784902.
  27.  M. Zadsar, M.R. Haghifam, and S.M.M. Larimi, “Approach for self-healing resilient operation of active distribution network with microgrid,” IET Gener. Transmiss. Distrib., vol. 11, no. 18, pp. 4633‒4643, 2017, doi: 10.1049/iet-gtd.2016.1783.
  28.  W. Jiang, C. Yang, Z. Liu, M. Liang, P. Li, and G. Zhou, “A Hierarchical Control Structure of Distributed Energy Storage System in DC Micro-Grid,” IEEE Access, vol. 7, pp. 128787‒128795, 2019, doi: 10.1109/access.2019.2939626.
  29.  K. Karimizadeh, S. Soleymani, and F. Faghihi, “Optimal placement of DG units for the enhancement of MG networks performance using coalition game theory,” IET Gener. Transmiss. Distrib., vol. 14, no. 5, pp. 853‒862, 2020, doi: 10.1049/iet-gtd.2019.0070.
  30.  J. Machowski, J. W. Bialek, and J. R. Bumby, Power System Dynamics: Stabilty and Control. Haboken, New Jersey, John Wiley & Sons, Ltd., 2008, pp. 89‒99.
  31.  P. Li, J. Ji, H. Ji, G. Song, Ch. Wang, and J. Wu, “Self-healing oriented supply restoration method based on the coordination of multiple SOPs in active distribution networks,” Energy, vol. 195, 116968, 2020, doi: 10.1016/j.energy.2020.116968.
  32.  S. Pochpor and H.M. Suryawanshi, “Design and Analysis of Triplen Controlled Resonant Converter for Renewable Sources to Interface DC Micro Grid,” IEEE Access, vol. 7, pp. 15330‒15339, 2019, doi: 10.1109/access.2019.2891165.
  33.  S. Heinen and M.J. O’Malley, “Complementarities of Supply and Demand Sides in Integrated Energy Systems,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 1156‒1165, 2019, doi: 10.1109/tsg.2018.2871393.
  34.  F. Liberati, A. Di Giorgio, A. Giuseppi, A. Pietrabissa, E. Habib, and L. Martirano, “Joint Model Predictive Control of Electric and Heating Resources in a Smart Building,” IEEE Trans. Ind. Electron, vol. 55, no. 6, pp. 7015‒7027, 2019, doi: 10.1109/TIA.2019.2932954.
  35.  A. Mojallal, S. Lotfifard, and S.M. Azimi, “A Nonlinear Supplementary Controller for Transient Response Improvement of Distributed Generations in Micro-Grids,” IEEE Trans. Sustain. Energy, vol. 11, no. 1, pp. 489‒499, 2020, doi: 10.1109/tste.2019.2895961.
  36.  S. Gude and Ch-Ch Chu, “Single Phase Enhanced Phase-Locked Loops Based on Multiple Delayed Signal Cancellation Filters for Micro- Grid Applications,” IEEE Trans. Ind. Electron, vol. 55, no.  6, pp. 7122‒7133, 2019, doi: 10.1109/TIA.2019.2915563.
Go to article

Authors and Affiliations

Artur Łukaszewski
ORCID: ORCID
Łukasz Nogal
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This study introduces a robust strategy for regulating output voltage in the presence of false data injection (FDI) attacks. Employing a hierarchical approach, we disentangle the distributed secondary control problem into two distinct facets: an observer-based resilient tracking control problem and a decentralized control problem tailored for real systems. Notably, our strategy eliminates the reliance on global information and effectively mitigates the impact of FDI attacks on directed communication networks. Ultimately, simulation results corroborate the efficacy of our approach, demonstrating successful voltage regulation within the system and proficient management of FDI attacks.
Go to article

Authors and Affiliations

Rongqiang Guan
1
ORCID: ORCID
Jing Yu
1
ORCID: ORCID
Siyuan Fan
2
ORCID: ORCID
Tianyi Sun
2
ORCID: ORCID
Peng Liu
2
ORCID: ORCID
Han Gao
2
ORCID: ORCID

  1. Jilin Engineering Normal University, Changchun, 130000, China
  2. Northeast Electric Power University, Jilin, 132000, China
Download PDF Download RIS Download Bibtex

Abstract

A methodology is proposed for modifying computer ontologies (CO) for electronic courses (EC) in the field of information and communication technologies (ICT) for universities, schools, extracurricular institutions, as well as for the professional retraining of specialists. The methodology includes the modification of CO by representing the formal ontograph of CO in the form of a graph and using techniques for working with the graph to find optimal paths on the graph using applied software (SW). A genetic algorithm (GA) is involved in the search for the optimal CO. This will lead to the division of the ontograph into branches and the ability to calculate the best trajectory in a certain sense through the EC educational material, taking into account the syllabus. An example is considered for the ICT course syllabus in terms of a specific topic covering the design and use of databases. It is concluded that for the full implementation of this methodology, a tool is needed that automates this procedure for developing EC and/or electronic textbooks. An algorithm and a prototype of software tools are also proposed, integrating machine methods of working with CO and graphs.
Go to article

Authors and Affiliations

Nazym Sabitova
1
Yuriy Tikhonov
2
Valerii Lakhno
3
Makulov Kariyrbek
4
Olena Kryvoruchko
5
Vitalyi Chubaievskyi
5
Alona Desiatko
5
Mereke Zhumadilova
4

  1. Eurasian National University, Astana, Kazakhstan
  2. Luhansk Taras Shevchenko National University, Poltava, Ukraine
  3. National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
  4. Yessenov University, Aktau, Kazakhstan
  5. State University of Trade and Economics, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This paper addresses the problem of designing secure control for networked multi-agent systems (MASs) under Denial-of-Service (DoS) attacks. We propose a constructive design method based on the interaction topology. The MAS with a non-attack communication topology, modeled by quasi-Abelian Cayley graphs subject to DoS attacks, can be represented as a switched system. Using switching theory, we provide easily applicable sufficient conditions for the networked MAS to remain asymptotically stable despite DoS attacks. Our results are applicable to both continuoustime and discrete-time systems, as well as to discrete-time systems with variable steps or systems that combine discrete and continuous times.
Go to article

Authors and Affiliations

Ewa Girejko
1
Agnieszka Malinowska
1

  1. Bialystok University of Technology,Wiejska 45, 15-351 Białystok, Poland

This page uses 'cookies'. Learn more