Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

We present the variability of the thermal state and thickness of permafrost active layer at the raised marine beaches in Svalbard. The investigations were carried out using direct probing, thaw tube, ground temperature and radar soundings at Holocene strand plains 10–20 m a.s.l. in Fuglebergsletta (SW Spitsbergen) and at the shore of Kinnvika Bay (Nordaustlandet). Their results were compared to those obtained at other coastal sites in Svalbard. The ground temperature measurements were conducted in 2009 on August, recognized as the standard month for the maximum thawing during the last decade. The studied sites are typical for close to extreme active layer conditions on Svalbard. In Hornsund, the thawing depth exceeded 2 m, while in Kinnvika the active layer was thinner than 1 m. In Svalbard, the depth of thawing decreases generally from south to north and from the open sea coast to the central parts of islands. These differences are the consequence of diverse climatic conditions strongly determined by the radiation balance modified by a number of regional ( e.g. ocean circulation) and local ( e.g. duration of snow deposition) conditions.
Go to article

Authors and Affiliations

Piotr Dolnicki
Tomasz Budzik
Mariusz Grabiec
Dariusz Puczko
Łukasz Gawor
Jan Klementowski
Download PDF Download RIS Download Bibtex

Abstract

RADAR plays a vital role in military applications since its origin in the 2nd world war. Recently it has been used in surface inception, health monitoring, infrastructure health monitoring, etc. In these applications, Ultra-wideband RADAR systems are more popular than traditional RADAR systems. Impulse RADAR is a special kind of ultra-wideband RADAR, which is mostly used for surface penetration, through-wall imaging, antimissile detection, anti-stealth technology, etc. because of its high resolution and low center frequency. Out of all these applications, impulse RADAR has been used intensively as a ground-penetrating RADAR for the detection of land mines, underlying pipelines, buried objects, etc. This report has attempted to provide the steps for designing the impulse ground penetrating RADAR (GPR) as well as provides the value of crucial parameters required in the design process of commercial GPR systems.
Go to article

Bibliography

[1] M.G.M. Hussain, “Ultra-wideband impulse RADAR-An overview of the principles,” IEEE Aerosp. Electron. Syst. Mag., vol. 13, no. 9, pp. 9 -14, 1998. DOI: https://doi.org/10.1109/62.715515.
[2] D. L. Black, “An overview of impulse RADAR phenomenon,” IEEE AES Systems Magazine, pp. 6-11, Dec. 292. DOI: https://doi.org/10.1109/NAECON.1992.220600.
[3] M. I. Skolnik, “An Introduction To Impulse RADAR”, 1990.
[4] D. Daniels, “Applications of impulse RADAR technology,” Proc. RADAR Systems (RADAR 97), pp. 667 -672. DOI: https://doi.org/10.1049/cp:19971759.
[5] M. Sato, “Principles of mine detection by ground-penetrating RADAR,”Anti-personnel Landmine Detection for Humanitarian Demining, Springer London, 2009. 19-26. DOI: https://doi.org/10.1007/978-1-84882-346-4_2.
[6] M. N. Cohen, “An overview of high range resolution radar techniques,” NTC ’91 - National Telesystems Conference Proceedings, Atlanta, GA, USA, 1991, pp. 107-115, DOI: https://doi.org/10.1109/NTC.1991.147997.
[7] J. S. Lee and C. Nguyen, “Novel low-cost ultra-wideband, ultra-short-pulse transmitter with MESFET impulse-shaping circuitry for reduced distortion and improved pulse repetition rate,” IEEE Microwave Wireless Compon. Lett. , vol.11, pp. 208 -210, 2001. DOI: https://doi.org/10.1109/7260.923030.
[8] J. S. Lee and C. Nguyen, “Uniplanar picosecond pulse generator using step-recovery diode,” Electron. Lett., vol. 37, pp. 504–506, 2001. DOI: https://doi.org/10.1049/el:20010350
[9] J. Han and C. Nguyen, “Ultra-wideband electronically tuneable pulse generators,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 112 -114, 2004. DOI: https://doi.org/10.1109/LMWC.2004.825184.
[10] J. Han and C. Nguyen, “A new ultra-wideband, ultra-short monocycle pulse generator with reduced ringing,” IEEE Microwave Wireless Compon. Lett., vol. 12, pp. 206 -208, 2002. DOI: https://doi.org/10.1109/LMWC.2002.1009996.
[11] Yan Xiao, Zhong-Yong Wang, Li, J., Zi-Lun Yuan , “Design of a Second-Derivative Gaussian pulse generator,” IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC), pp. 1 – 4, 2013. DOI: https://doi.org/10.1109/ICSPCC.2013.6663994.
[12] M.S. Nikoo, S.M.A. Hashemi., “High-Power Nanosecond Pulse Generator With High-Voltage SRD and GDT Switch,” IEEE Trans. Plasma Sci. ,vol. 43, no. 9, pp. 3268-3276, Sept. 2015. DOI: https://doi.org/10.1109/TPS.2015.2411251.
[13] M. Cavallaro, E. Ragonese and G. Palmisano, “An ultra-wideband transmitter based on a new pulse generator,” Proc. IEEE Radio Freq. Integ. Circuits Symp, pp. 43-46, 2008. DOI: https://doi.org/10.1109/RFIC.2008.4561382.
[14] El-Gabaly, “Pulsed RF Circuits for Ultra Wideband Communications and RADAR Applications,” Ph.D dissertation, Dept. Elect. Comput. Eng., Queen’s University, Canada, Aug. 2011.
[15] S. Bourdel et. al., “A 9-Pj/Pulse 1.42-Vpp OOK CMOS UWB pulse generator for the 3.1-10.6-GHz FCC band,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 1, pp. 65, 2010. DOI: https://doi.org/10.1109/TMTT.2009.2035959.
[16] Aitykul Omurzakov, Ahmet K. Keskin., “Avalanche Transistor Short Pulse Generator Trials for GPR,” 2016 8th International Conference on Ultra wideband and Ultra short Impulse Signals), Dec. 2016. DOI: https://doi.org/10.1109/UWBUSIS.2016.7724188.
[17] Ran Zhang, Lai-Liang Song., “Research on narrow pulse generation for ultra-wideband communication,” 2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Dec. 2016. DOI: https://doi.org/10.1109/ICCWAMTIP.2016.8079860.
[18] S. Sim, D. Kim and S. Hong, “A CMOS UWB Pulse Generator for 6–10 GHz Applications,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 2, pp. 83-85, Feb. 2009, DOI: https://doi.org/10.1109/LMWC.2008.2011318.
[19] K. Zhou, C. L. Huang and M. Lu, “A nanosecond pulse generator based on avalanche transistor,” 2016 16th International Conference on Ground Penetrating Radar (GPR), Hong Kong, 2016, pp. 1-5, DOI: https://doi.org/10.1109/ICGPR.2016.7572649.
[20] P. Protiva, J. Mrkvica, and J. Macháč, “A compact step recovery diode subnanosecond pulse generator,” Microw. Opt. Technol. Lett., 52: 438-440. DOI: https://doi.org/10.1002/mop.24945 .
[21] T.P. Montoya, G.S. Smith, “A study of pulse radiation from several broad-band loaded monopoles,” IEEE Trans. Antennas Propag., vol. 44, no. 8, pp. 1172-1182, Aug 1996. DOI: https://doi.org/10.1109/8.511827.
[22] David J. Daniels, Ground Penetrating RADAR, 2nd Edition, IET, 2005. DOI: https://doi.org/10.1049/PBRA015E.
[23] S. Vitebskiy, L. Carin, M. A. Ressler and F. H. Le, “Ultra-wideband, short-pulse ground-penetrating radar: simulation and measurement,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 3, pp. 762-772, May 1997, DOI: https://doi.org/10.1109/36.581999.
[24] M.A. Gonzalez-Huici, U. Uschkerat, V. Seidel, C. Pedlow, “A preliminary study of the radiation characteristic of an experimental GPR antenna for underground cavity detection,” IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (COMCAS), 2011, pp. 1-5, 7-9 Nov 2011. DOI: https://doi.org/10.1109/COMCAS.2011.6105908.
[25] A .P.Annan, Ground Penetrating RADAR Principles, Procedures & Applications, 2003.
[26] Greg Barrie, “UWB Impulse RADAR Characterization and Processing Techniques,” Defence R&D Canada, Ottawa, Tech. Rep. TR 2004-251, Dec. 2004.
[27] Y.J. Park et al., “Development of a UWB GPR System for Detecting Small Objects Buried under Ground,” IEEE Conf. on ultra-wideband systems and Technologies, 2003, pp.384-388. DOI: https://doi.org/10.1109/UWBST.2003.1267869.
[28] M. Yan, M. Tian, L. Gan and X. Chen, “Impulse Ground Penetrating Radar Hardware System Design,” 2006 6th International Conference on ITS Telecommunications, Chengdu, 2006, pp. 1244-1247, DOI: https://doi.org/10.1109/ITST.2006.288852.
[29] A.P. Annan, L.T. Chua, “Ground penetrating RADAR performance predictions,” Ground penetrating RADAR, ed. J. Pilon; Geological Survey of Canada, Paper 90-4, pp. 5-13, 1992.
[30] Jeong Soo Lee, Cam Nguyen and T. Scullion, “A novel, compact, low-cost, impulse ground-penetrating radar for nondestructive evaluation of pavements,” IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 6, pp. 1502-1509, Dec. 2004, DOI: https://doi.org/10.1109/TIM.2004.82730.
Go to article

Authors and Affiliations

Saket Kumar
1
Amit Kumar
2
Vikrant Singh
3
Abhishek Kumar Singh
4

  1. Department of Electronics and Communication Engineering, Muzaffarpur Institute of Technology, Muzaffarpur, Bihar, India
  2. Department of Electronics and Communication Engineering, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune, India
  3. Department of Electrical and Electronics Engineering, IIT Guwahati, India
  4. School of Advanced Sciences, Department of Physics, Vellore Institute of Technology, Vellore, Tamil Naidu, India
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a suggested approach for forensic investigation of bridge decks in which Ground penetrating radar (GPR) consisting of two antennas is used to assess the current conditions. The methodology was tested on a bridge deck in central Sicily. The acquired data were analyzed for identifying the asphalt overlay thickness, concrete cover depth and deck thickness and location of the rebar reinforcement. In the proposed approach for assessing bridge deck conditions the GPR survey was complemented with (i) a site investigation on layer thicknesses for calibration/verification purposes of the GPR response and (ii) a Terrestrial Laser Scanning system (TLS) to verify the bridge design slab curvature. The study shows that this methodology has significant merits on accurately assessing such bridge deck components when bridge design records are non-existing, and by using non-invasive methods such as laser scanning and GPR. The great advantage provided by the TLS technique is the possibility to obtain a 3D output model of the scanned element with the accuracy of the best topographic instruments in order to complement GPR data surveys for bridge inspection.

Go to article

Authors and Affiliations

S. Cafiso
A. Di Graziano
D. Goulias
M. Mangiameli
G. Mussumeci
Download PDF Download RIS Download Bibtex

Abstract

The ground-penetrating radar (GPR) method has been used for many years in archaeological research. However, this method is still not widely used in studies of past architecture. The biggest problem with the implementation of the GPR method at such sites is usually connected with extensive debris layers, plant cover and standing relics of walls and other features that restrict the available measurement area. Despite of these, properly performed GPR surveys, even on a small area, can yield significant information concerning underground architectural relicts. Moreover, the results of GPR profiling integrated with historical and archeological data allow for three-dimensional reconstruction of the examined architectural monuments and in the next step, they track architectural transformations. Relics of the Romanesque St. Peter monastery, located in the northern part of the Island of Rab, is a good example of the successful GPR survey. Results of the performed geophysical reconnaissance in conjunction with the query of archival materials made it possible to visualize a spatial (3D) appearance of three main phases of the site architectural development, despite a very limited area available for geophysical survey. According to the authors, such a comprehensive approach should be a standard in contemporary geophysical research focused on relics of the past architecture.
Go to article

Authors and Affiliations

Fabian Welc
1
Ana Konestra
2
ORCID: ORCID

  1. Cardinal Stefan Wyszyński University, Institute of Archaeology, Wóycickiego 1/3, bud. 23, 01-938 Warsaw, Poland
  2. Institute of Archaeology, Jurjevska ulica 15, 10000 Zagreb, Croatia
Download PDF Download RIS Download Bibtex

Abstract

The article presents application of the new geophysical amplitude data comparison method (ADCM), resulting from integrated geophysical survey using ground-penetrating radar (GPR) and magnetometry. The ADCM was applied to recognize the horizontal and vertical stratigraphy of a Roman senatorial villa located in Santa Marina (western part of Croatian Istria). The measurements were carried out in 2017−2019 at this site, accompanied by a use of GPR and gradientometer. These two methods significantly differ from each other, but on the other hand, they are complementary to some extent. This is due to the fact that the methods register different types of underground materials. The GPR records electromagnetic waves reflected from real buried remains or boundaries between geological or archaeological layers that differ significantly in electrical properties. The magnetic method, in turn, records the anomalies of the magnetic field intensity resulting from the underground concentration of ferromagnetic minerals, hence it is ideal for searching structures filled with organic matter or burning material. However, a separate usage of these methods does not guarantee a full picture of archaeological structures that are preserved underground. Only the application of the ADCM allowed for a comparison of GPR and magnetic amplitude data reading, following which a spatial image (2D and 3D) of the preserved archaeological structures and the geological stratigraphy of the Santa Maria site were obtained.

Go to article

Authors and Affiliations

Fabian Welc
Corinne Rousse
Gaetano Bencic
Download PDF Download RIS Download Bibtex

Abstract

This study used ground penetrating radar soundings to examine a tongue-shaped rock glacier (64°04’S 58°25’W) on James Ross Island, Antarctic Peninsula, in January 2005. The rock glacier studied has multiple well-developed transverse ridges and approximately 800 m long from the talus of its head to its frontal slopes and is 300 m wide in the middle. The longitudinal ground penetrating radar profile identified debris bands which dip up-glacier, similar to the thrust structures in the compression zone of a valley glacier. Transverse ground penetrating radar profiles indicated a layered structure which is inclined towards the central part of the rock glacier and which resembles the transverse foliation of a valley glacier. Consequently, the internal structure of the rock glacier is revealed as being similar to the “nested spoons” common in the interior of valley glaciers. We concluded that this rock glacier has been created by the deformation of a glacier ice core and a thick and continuous debris mantle.

Go to article

Authors and Affiliations

Kotaro Fukui
Toshio Sone
Jorge A. Strelin
Cesar A. Torielli
Junko Mori
Download PDF Download RIS Download Bibtex

Abstract

From the construction made in the “white box” technology, first of all tightness is required - on the structural elements there should not be any cracks or scratches, through which water could penetrate, which in consequence may lead to deformation of structural elements and even loosing of their load-bearing capacity. Among the methods enabling the location of weakened places in watertight concrete, the ground penetrating radar (GPR) method is effective because the local occurrence of water in the structure evokes a clear and unambiguous anomaly on the radargram. In addition, the GPR method allows you to indicate places where water flows without the necessity of excluding the object from use and interference in the construction layers. The designation of such locations will make it possible to undertake technical activities that can facilitate the takeover of water and thus ensure the desired load-bearing capacity and usability of the object. Using the GPR method, you can also designate places that have already been deformed – discontinuities or breaking. The article presents a case study of investigations that determine the causes of leakage of tunnels made in the “white box” technology in: twice within the bottom slab of the tunnel (1 GHz air-coupled and 400 MHz ground-coupled antenna) and once in the case of tunnel walls (1.6 GHz ground-coupled antenna).

Go to article

Authors and Affiliations

Anna Lejzerowicz
ORCID: ORCID
Małgorzata Wutke
Download PDF Download RIS Download Bibtex

Abstract

GPR method is perfectly suited for recognizing of sedimentary facies diversity in shallowly occurring sediments if there is a contrast of electrical properties between and/or within each layer. The article deals with the issue of the correlation between GPR surveys results and sedimentological analyses. As a result of this correlation a conceptual model of depositional systems of studied areas was developed. Studies were performed in two areas located in central Poland, where glacial deposits formed in the Middle Polish (Saalian) Glaciation are present. The study was based on 49 sediment samples and 21 GPR profiles. Analyses of lithofacies as well as granulometric and mineralogical composition of deposits of collected samples were carried out, showing the diversity of glacial deposits in both study sites. During GPR measurements shielded antenna with a frequency of 500 MHz was used which allowed high-resolution mapping of the internal structure of deposits and to identify four characteristic radar facies. Correlation of GPR profiles with point, one-dimensional sedimentological studies allowed the unambiguous interpretation of the GPR image and draw conclusions about the formation environment of individual units. Geophysical and sedimentological data obtained during study provide a new and detailed insight into selected glacial deposits in central Poland.

Go to article

Authors and Affiliations

Anna Lejzerowicz
ORCID: ORCID
Anna Wysocka
Sebastian Kowalczyk
Download PDF Download RIS Download Bibtex

Abstract

The main scientific goal of this work is the presentation of the role of selected geophysical methods (Ground-Penetrating Radar GPR and Electrical Resistivity Tomography ERT) to identify water escape zones from retention reservoirs. The paper proposes a methodology of geophysical investigations for the identification of water escape zones from a retention fresh water lake (low mineralised water). The study was performed in a lake reservoir in Upper Silesia. Since a number of years the administrators of the lake have observed a decreasing water level, a phenomenon that is not related to the exploitation of the object. The analysed retention lake has a maximal depth between 6 and 10 m, depending on the season. It is located on Triassic carbonate rocks of the Muschelkalk facies. Geophysical surveys included measurements on the water surface using ground penetration radar (GPR) and electrical resistivity tomography (ERT) methods. The measurements were performed from watercrafts made of non-metal materials. The prospection reached a depth of about 1 to 5 m below the reservoir bottom. Due to large difficulties of conducting investigations in the lake, a fragment with an area of about 5,300 m 2, where service activities and sealing works were already commenced, was selected for the geophysical survey. The scope of this work was: (1) field geophysical research (Ground-Penetrating Radar GPR and Electrical Resistivity Tomography ERT with geodesic service), (2) processing of the obtained geophysical research results, (3) modelling of GPR and ERT anomalies on a fractured water reservoir bottom, and (4) interpretation of the obtained results based on the modelled geophysical anomalies. The geophysical surveys allowed for distinguishing a zone with anomalous physical parameters in the area of the analysed part of the retention lake. ERT surveys have shown that the water escape zone from the reservoir was characterised by significantly decreased electrical resistivities. Diffraction hyperboles and a zone of wave attenuation were observed on the GPR images in the lake bottom within the water escape zone indicating cracks in the bottom of the water reservoir. The proposed methodology of geophysical surveys seems effective in solving untypical issues such as measurements on the water surface.

Go to article

Authors and Affiliations

Radosław Mieszkowski
ORCID: ORCID
Emilia Wójcik
Mikołaj Kozłowski
Paweł Popielski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Large-scale stone-banked lobes and terraces are distributed over an area of 1 km2 of gentle slope on Rink Plateau in the northern part of James Ross Island, Antarctic Peninsula region. Topographically, there are two main features: relatively high risers up to 5 m high and distinct frontal ridges. In order to understand the processes responsible for these lobes and terraces, the authors have monitored air and ground temperatures and movement of stones on the surface over the period 1995-2005. In February 2005, the subsurface structures were surveyed by ground penetrating radar and drilling. The ground penetrating radar profiles identified the bedrock surface. The surface morphology of the lobes corresponds closely with that of the bedrock. The relatively high risers of these lobes are presumed to be due to a cessation of frontal advance.

Go to article

Authors and Affiliations

Junko Mori
Kotaro Fukui
Toshio Sone
Jorge A. Strelin
Cesar A. Torielli

This page uses 'cookies'. Learn more