Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Viral diseases have caused devastating effect on poultry industry leading to significant losses in economy of world. In the presented study, the ability of Newcastle disease virus (NDV), infectious bursal disease virus (IBDV) and avian influenza virus (AIV) to grow in two cell lines was evaluated. Both chicken embryo fibroblast (CEF) and DF-1 cells were used and cytopathic effects (CPE) produced by these viruses were observed. The titer of virus in terms of TCID50 was determined after 24h up to four days for each virus. The same type of CPE was observed for all viruses used in the study in both DF-1 and CEF cells. IBDV showed CPE causing rounding of cells while NDV caused formation of multicellular large nuclei, cell fusion and rounding of cells. Giant cells with inclusions and aggregation of cells with intact monolayer was observed for AIV. In growth kinetic study, higher titer of IBDV and NDV was observed in CEF cells than DF-1 cells while for AIV, DF-1 cells showed higher titer than CEF cells. These results would be useful for furthers comparative studies on growth of different cell lines of various viruses to find a suitability for vaccine production.
Go to article

Authors and Affiliations

S. Anam
1
S.U. Rahman
1
Shazma Ali
M. Saeed
2
S.M. Goyal
3

  1. Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture Faisalabad, Pakistan
  2. National Institute of Food Science and Technology, University of Agriculture Faisalabad, Pakistan
  3. College of Veterinary Population Medicine, 1333 Gortner Avenue, University of Minnesota, USA
Download PDF Download RIS Download Bibtex

Abstract

In recent years, infections are more often caused by pathogens with high multi-drug resistance, classified as the “ESKAPE” microorganisms. Therefore, investigation of these pathogens, e.g., Klebsiella pneumoniae, often requires biomass production for treatment testing such as antibiotics or bacteriophages. Moreover, K. pneumoniae can be successfully applied as a biocatalyst for other industrial applications, increasing the need for this bacteria biomass. In the current study, we proposed a novel magnetically assisted bioreactor for the cultivation of K. pneumoniae cells in the presence of an external alternating magnetic field (AMF). High efficiency of the production requires optimal bacteria growth conditions, e.g., temperature and field frequency. Therefore, we performed an optimization procedure using a central composite design for these two parameters in a wide range. As an objective function, we utilized a novel, previously described growth factor that considers both biomass and bacteria growth kinetics. Thus, based on the response surface, we could specify the optimal growth conditions. Moreover, we analysed the impact of the AMF on bacteria proliferation, which indicated positive field frequency windows, where the highest stimulatory effect of AMF on bacteria proliferation occurred. Obtained results proved that the magnetically assisted bioreactor could be successfully employed for K. pneumoniae cultivation.
Go to article

Authors and Affiliations

Maciej Konopacki
1 2
ORCID: ORCID
Adrian Augustyniak
1 3
ORCID: ORCID
Bartłomiej Grygorcewicz
1 2
ORCID: ORCID
Barbara Dołęgowska
2
ORCID: ORCID
Marian Kordas
1
ORCID: ORCID
Rafał Rakoczy
1
ORCID: ORCID

  1. West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
  2. Pomeranian Medical University in Szczecin, Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, al. Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland
  3. Technische Universität Berlin, Building Materials and Construction Chemistry, Gustav-Meyer Allee 25,13355 Berlin, Germany

This page uses 'cookies'. Learn more