Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The effects of friction were observed in electric guitar strings passing over an electric guitar saddle. The effects of changing the ratio of the diameter of the winding to the diameter of the core of the string, the angle through which the string is bent, and the length on either side of the saddle were measured. Relative tensions were deduced by plucking and measuring the frequencies of vibration of the two portions of string. Coefficients of friction consistent with the capstan equation were calculated and were found to be lower than 0.26 for wound strings (nickel plated steel windings on steel cores) and lower than 0.17 for unwound (tin plated steel) strings. The largest values of friction were associated with strings of narrower windings and wider cores and this may be due to the uneven nature of the contact between the string and saddle for wound strings or due the surface of the windings deforming more, encouraging fresh (and therefore higher friction) metal to metal contact. It is advised to apply lubrication under the saddle to string contact point after first bringing the string up to pitch rather than before in order to prevent this fresh metal to metal contact.

Go to article

Authors and Affiliations

Tom Groves
Jonathan A. Kemp
Download PDF Download RIS Download Bibtex

Abstract

For the purpose of making of a solid body of an electric guitar the acoustic- and mechanical properties of walnut- (Juglans regia L.) and ash wood (Fraxinus excelsior L.) were researched. The acoustic properties were determined in a flexural vibration response of laboratory conditioned wood elements of 430 × 186 × 42.8 mm used for making of a solid body of an electric guitar. The velocity of shearand compression ultrasonic waves was additionally determined in parallel small oriented samples of 80 × 40 × 40 mm. The research confirmed better mechanical properties of ash wood, that is, the larger modulus of elasticity and shear modules in all anatomical directions and planes. The acoustic quality of ash wood was better only in the basic vibration mode. Walnut was, on the other hand, lighter and more homogenous and had lower acoustic- and mechanical anisotropy. Additionally, reduced damping of walnut at higher vibration modes is assumed to have a positive impact on the vibration response of future modelled and built solid bodies of electric guitars. When choosing walnut wood, better energy transfer is expected at a similar string playing frequency and a structure resonance of the electric guitar.

Go to article

Authors and Affiliations

Anton Zorič
Jasmin Kaljun
Ervin Žveplan
Aleš Straže
Download PDF Download RIS Download Bibtex

Abstract

Electric guitar manufacturers have used tropical woods in guitar production for decades claiming it as beneficiary to the quality of the instruments. These claims have often been questioned by guitarists but now, with many voices raising concerns regarding the ecological sustainability of such practices, the topic becomes even more important. Efforts to find alternatives must begin with a greater understanding of how tonewood affects the timbre of an electric guitar. The presented study examined how the sound of a simplified electric guitar changes with the use of various wood species. Multiple sounds were recorded using a specially designed test setup and their analysis showed differences in both spectral envelope and the generated signal level. The differences between the acoustic characteristics of tones produced by the tonewood samples explored in the study were larger than the just noticeable differences reported for the respective characteristics in the literature. To verify these findings an informal listening test was conducted which showed that sounds produced with different tonewoods were distinguishable to the average listener.
Go to article

Bibliography

1. Ahvenainen P. (2018), Anatomy and mechanical properties of woods used in electric guitars, IAWA Journal, 40(1): 106–S6, doi: 10.1163/22941932-40190218.
2. Ahmed S.A., Adamopoulos S. (2018), Acoustic properties of modified wood under different humid conditions and their relevance for musical instruments, Applied Acoustics, 140: 92–99, doi: 10.1016/j.apacoust.2018.05.017.
3. Bennett B. (2016), The sound of trees: wood selection in guitars and other chordophones, Economic Botany, 70(1): 49–63, doi: 10.1007/s12231-016-9336-0.
4. Carral S. (2011), Determining the just noticeable difference in timbre through spectral morphing: a trombone example, Acta Acustica united with Acustica, 97(3): 466–476, doi: 10.3813/AAA.918427.
5. Fleischer H., Zwicker T. (1998), Mechanical vibrations of electric guitars, Acta Acustica united with Acustica, 84(4): 758–765.
6. Fletcher N., Rossing T. (1998), The Physics of Musical Instruments, doi: 10.1007/978-0-387-21603-4.
7. Green D.M. (1993), Auditory Intensity Discrimination, Springer Handbook of Auditory Research, Vol. 3, Springer, New York, doi: 10.1007/978-1-4612-2728-1_2.
8. Jansson E.V. (1983), Acoustics for the Guitar Maker, Function, Construction and Quality of the Guitar, Publication No. 38 of the Royal Swedish Academy of Music, Stockholm.
9. Koch M. (2001), Building Electric Guitars: How to Make Solid-Body, Hollow-Body and Semi-Acoustic Electric Guitars and Bass Guitars, Koch Verlag, Gleisdorf.
10. Martinez-Reyes J. (2015), Mahogany intertwined: Enviromateriality between Mexico, Fiji, and the Gibson Les Paul, Journal of Material Culture, 20(3): 313– 329, doi: 10.1177/1359183515594644.
11. Ozimek E. (2002), Sound and its Perception. Physical and Psychoacoustic Aspects [in Polish: Dzwiek i jego percepcja. Aspekty fizyczne i psychoakustyczne], Polish Scientific Publishers PWN, Warsaw.
12. Paté A., Le Carrou J., Fabre B. (2013), Ebony vs. Rosewood: experimental investigation about the influence of the fingerboard on the sound of a solid body electric guitar, [in:] Proceedings of the Stockholm Musical Acoustics Conference (SMAC), Stockholm (Sweden), pp. 182–187.
13. Paté A., Le Carrou J., Navarret B., Dubois D., Fabre B. (2015), Influence of the electric guitar’s fingerboard wood on guitarists’ perception, Acta Acustica united with Acustica, 101(2): 347–359, doi: 10.3813/AAA.918831.
14. Puszynski J. (2014), String-wood feedback in electrics string instruments, Annals of Warsaw University of Life Sciences – SGGW Land Reclamation, 2014(85): 196–199.
15. Puszynski J., Molinski W., Preis A. (2015), The effect of wood on the sound quality of electric string instruments, Acta Physica Polonica, 127(1): 114–116, doi: 10.12693/APhysPolA.127.114.
16. Schubert E., Wolfe J. (2006), Does timbral brightness scale with frequency and spectral centroid?, Acta Acoustica United with Acustica, 92(5): 820–825.
17. Torres J., Boullosa R. (2009), Influence of the bridge on the vibrations of the top plate of a classical guitar, Applied Acoustics, 70(11–12): 1371–1377, doi: 10.1016/j.apacoust.2009.07.002.
18. Torres J., Boullosa R. (2011), Radiation efficiency of a guitar top plate linked with edge or corner modes and intercell cancellation, The Journal of the Acoustical Society of America, 130(1): 546–556, doi: 10.1121/1.3592235.
19. Tzanetakis G., Cook P. (2002), Musical genre classification of audio signals, 2002 IEEE Transactions on Speech and Audio Processing, 10(5): 293–302, doi: 10.1109/TSA.2002.800560.
20. Ulrich R., Vorberg D. (2009), Estimating the difference limen in 2AFC tasks: pitfalls and improved estimators, Attention, Perception, & Psychophysics, 71(6): 1219–1227, doi: 10.3758/app.71.6.1219.
21. Wilkowski J., Michalowski P., Czarniak P., Górski J., Podziewski P., Szymanowski K. (2014), Influence of spruce, wenge and obeche wood used for electric guitar prototype on selected sound properties, Annals of Warsaw University of Life Sciences – SGGW. Forestry and Wood Technology, 85: 235–240.
Go to article

Authors and Affiliations

Jan Jasiński
1
Stanisław Oleś
1
Daniel Tokarczyk
1
Marek Pluta
1

  1. Department of Mechanics and Vibroacoustics, AGH University of Science and Technology, Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The feasibility of substituting the types of wood usually employed in the making of guitars and violins was analyzed, but without comparing the properties of involved materials as it is often reported; in this work, the vibrational behavior of twelve guitars and three violins built with alternative types of woods was compared to data of classical instruments available in the literature. In the guitars here measured, the back plate and ribs were not made from traditional woods; while in the violins, only the top plate was made from an alternative type of wood. The results showed that changing the wood of back plate and ribs does not radically affect the typical mobility of a guitar; however, the expected mobility for a violin was not clearly obtained substituting the wood of the top plate. Thus it seems feasible to substitute the wood of back plate and ribs in guitars without causing dramatic changes in their performance; in contrast, a change of the wood type for top plate in violins seems inadvisable unless the design of the top plate is modified to compensate the differences between the woods.
Go to article

Authors and Affiliations

Jesús Alejandro Torres
Reydezel Torres-Martínez
Download PDF Download RIS Download Bibtex

Abstract

The study makes an attempt to model a complete vibrating guitar including its non-linear features, specifically the tension-compression of truss rod and tension of strings. The purpose of such a model is to examine the influence of design parameters on tone. Most experimental studies are flawed by uncertainties introduced by materials and assembly of an instrument. Since numerical modelling of instruments allows for deterministic control over design parameters, a detailed numerical model of folk guitar was analysed and an experimental study was performed in order to simulate the excitation and measurement of guitar vibration. The virtual guitar was set up like a real guitar in a series of geometrically non-linear analyses. Balancing of strings and truss rod tension resulted in a realistic initial state of deformation, which affected the subsequent spectral analyses carried out after dynamic simulations. Design parameters of the guitar were freely manipulated without introducing unwanted uncertainties typical for experimental studies. The study highlights the importance of acoustic medium in numerical models.

Go to article

Authors and Affiliations

Paweł Michał Bielski
Marcin Kujawa
Izabela Lubowiecka

This page uses 'cookies'. Learn more