Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper is to compare nitrate concentrations in samples of supply water as well as

water from deep and dug wells located in the eastern region of Poland. Additionally, samples of bottled water

(spring and natural mineral), certifi ed by the Institute of Mother and Child and the Children’s Memorial Health

Institute, were subjected to analyses. On the basis of the obtained results, health risks related to the occurrence

of methemoglobinemia in neonates and infants were evaluated. The risk analysis was performed according to

the procedure recommended by the United States Environmental Protection Agency. Nitrate concentrations in

the examined samples ranged from: 0.153–161.1 mg/l. The lowest concentration of nitrates was determined in

the samples of bottled water, the highest being detected in the water from dug wells. It was found that nitrate

concentration in samples of bottled and supply water did not pose any risk to the health of neonates and infants.

The highest health risk related to methemoglobinemia occurs for neonates consuming water originating from

dug wells. The risk decreases along with the age of an infant.

Go to article

Authors and Affiliations

Elżbieta Królak
Jolanta Raczuk
Download PDF Download RIS Download Bibtex

Abstract

Uranium concentrations in groundwater taken from private drilled wells have been never determined in Poland, implying a lack of available data to quantify the human exposure to U through drinking water consumption, especially in rural areas influenced by mining activities. The main aim of the study was the assessment of human health risk related to the consumption of well waters containing U, collected from selected rural areas of the Lower Silesian region (Poland). The random daytime (RDT) sampling method was applied to the collection of well waters from three control study areas (CSA): Mniszków (CSA-A), Stara Kamienica/M. Kamienica/Kopaniec (CSA-B) and Kletno (CSA-C). The analyses of RDT samples were performed by validated method based on inductively coupled plasma mass spectrometry (ICP-MS). Uranium concentration ranges in well waters and the estimated geometric means for individual control study areas were: 0.005-1.03 μg/L and 0.052 μg/L (CSA-A), 0.027-10.6 μg/L and 0.40 μg/L (CSA-B), and 0.006-27.1 μg/L and 0.38 μg/L (CSA-C). The average and individual chronic daily intakes (CDI) of U by drinking water pathway (adults/children) were in the ranges of: 0.0017-0.013/0.0052-0.040 μg · kg-1 · day-1 and 0.0002-0.90/0.0005-2.71 μg · kg-1 · day-1. The average %TDI and ranges of individual %TDI (adults/children) were: 0.17%/0.52% and 0.02-3.4%/0.05-10.3% (CSA-A), 1.3%/4.0% and 0.09-35%/0.27-106% (CSA-B), and 1.3%/3.8% and 0.02-90%/0.06-271% (CSA-C). The estimated average CDI values of U through well water are significantly lower than the TDI (1 μg · kg-1 · day-1), while for individual CDI values the contribution to the TDI can reach even 90% (adults) and 271% (children), indicating essential human health risk for children consuming well water from private drilled wells located in CSA-B and CSA-C (5.3% of total number of samples collected).

Go to article

Authors and Affiliations

Sławomir Garboś
Dorota Święcicka
Download PDF Download RIS Download Bibtex

Abstract

The present study investigated the relationship between social support, self-supportive behaviors, health risk behaviors, and daily activities of Turkish university students during the first wave of the Coronavirus Disease 2019 pandemic. We aimed to reveal how an unexpected global crisis may affect the association between social indicators and health risk behaviors among university students. As part of a large international study, a total of 7,125 university students (71% female) with a mean age of 23.50 ( SD = 6.08) from eight universities in Türkiye responded to an online survey during May 2020. Having a romantic relationship and significant other made a difference in students' health risk behaviors and daily activity indicators before and during the pandemic. Self-supportive behaviors and social contact predicted health risk behaviors and daily activity indicators, which differed according to residence location during the pandemic. Findings showed that Turkish university students' health risk behaviors and daily activity choices were influenced not only by the limitations of the pandemic but also individual behaviors and conditions as well as social relationships.
Go to article

Authors and Affiliations

Gülden Erden
1
Sami Çoksan
2
ORCID: ORCID
Asil Ali Özdoğru
3
ORCID: ORCID
Aysun Ergül-Topçu
4
Yakup Azak
5
Gözde Kıral Uçar
6
Hale Ögel-Balaban
7
İlkiz Altınoğlu Dikmeer
4
Yeşim Yasak
4

  1. Beykoz University, İstanbul, Türkiye
  2. Erzurum Technical University, Erzurum, Türkiye
  3. Üsküdar University, Istanbul, Türkiye
  4. Çankırı Karatekin University, Çankırı, Türkiye
  5. Tekirdağ Namık Kemal University, Tekirdağ, Türkiye
  6. Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
  7. Bahçeşehir University, Istanbul, Türkiye
Download PDF Download RIS Download Bibtex

Abstract

This study explains water quality in terms of seven heavy metals in the Upstream Citarum River and analyses human health risk (non-carcinogenic risk) for adults and children. Water samples were collected from five sampling locations along the Upstream Citarum River, i.e. from Majalaya Sub-District to Dayeuhkolot Sub-District. The contents of heavy metals were analysed by the Atomic Absorption Spectrometer (AAS) variant 240 FS. The results of the analysis showed that the pollution index value, which was categorised as slightly polluted from the highest to the lowest value, was as follows: location 4 (4.220) > location 1 (3.764) > location 2 (3.219) > location 5 (2.967) > location 3 (2.800). Values of the hazard index ( HI) for adults and children were as follows: Pb > Cr > Cd > Zn > Ni > Co > Cu. Pb and Cr have HI values greater than 1. This indicates that these metals can have a negative impact on public health. The HI in the ingestion pathway was greater than that of the dermal pathway, and the HI value for children was greater than that for adults. Further research is needed regarding the health risks from groundwater around the area which is used directly by the community because river water and groundwater systems are interconnected through streambeds.
Go to article

Authors and Affiliations

Nurul Fahimah
1
ORCID: ORCID
Indah R.S. Salami
1
ORCID: ORCID
Katharina Oginawati
1
ORCID: ORCID
Septian H. Susetyo
1
ORCID: ORCID
Agam Tambun
1
Asep N. Ardiwinata
2
Sukarjo Sukarjo
2
ORCID: ORCID

  1. Institut Teknologi Bandung, Faculty of Civil and Environmental Engineering, Department of Environmental Engineering, Environmental Management Technology Research Group, Jalan Ganesha 10, Bandung 40132, West Java, Indonesia
  2. Research Center for Horticultural and Estate Crops, National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Due to the widespread presence and harmfulness of heavy metals in the environment, scholars around the world have evaluated the exposure characteristics and health risks of heavy metals. To understand the status, hotspots, and development treads of heavy metal health risk assessment research, we used bibliometric analysis tools to conduct scientometric analysis of the literature related to the health risk assessment of heavy metals in the Web of Science database from 2000 to 2022. The analysis results indicate that research related to heavy metal health risk assessment is rapidly developing in both developed and developing countries. China’s significant international influence in this field is worth noting, as there are many publications and highly cited documents related to China. France and other developed countries also play an important role in this field due to their high centrality and strong bursts. The results of co-citation cluster analysis and keyword co-occurrence analysis indicate that in the past two decades, the primary research domains and hotspots of heavy metal health risk assessment have been the study of heavy metals in soil, dust, drinking water, vegetables, fish, and sediment. There is a specific focus on bioaccumulation, bioavailability, source apportionment, and spatial distribution of heavy metals. The main types of heavy metals studied are lead, cadmium, mercury, and zinc. The results of the bursts keywords analysis suggest that future research trends may focus more on the health risks of heavy metals in different functional areas of cities.
Go to article

Bibliography

  1. Alam, A., Chaudhry, M. N., Ahmad, S. R., Batool, A., Mahmood, A. & Al-Ghamdi, H. A. (2021). Application of EASEWASTE model for assessing environmental impacts from solid waste landfilling. Archives of Environmental Protection. 47(4), pp. 84–92, DOI:10.24425/aep.2021.139504
  2. Ali, H., Khan, E. & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 6730305. DOI: 10.1155/2019/6730305
  3. Antoniadis, V., Shaheen, S. M., Boersch, J., Frohne, T., Laing, G. D. & Rinklebe, J. (2017). Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Journal of Environmental Management, 186, pp. 192–200. DOI: 10.1016/j.jenvman.2016.04.036
  4. Aoshima, K. (2012). Itai-itai disease: cadmium-induced renal tubular osteomalacia-current situations and future perspectives. Japanese Journal of Hygiene, 67, pp. 455–463. DOI: 10.1265/jjh.67.455
  5. Börner, K., Chen, C. & Boyack K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37, pp. 179–255. DOI:10.1002/aris.1440370106
  6. Cai, M., An, C. & Guy, C. (2021). A scientometric analysis and review of biogenic volatile organic compound emissions: Research hotspots, new frontiers, and environmental impliations. Renewable and Sustainable Energy Reviews, 149, 111317. DOI:10.1016/j.rser.2021.111317
  7. Cao, S., Duan, X., Zhao, X., Ma, J., Dong, T., Huang, N., Sun, C., He, B. & Wei, F. (2014). Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Science of the Total Environment, 472, pp. 1001–1009. DOI:10.1016/j.scitotenv.2013.11.124
  8. Chen, C. (2005). The centrality of pivotal points in the evolution of scientific networks. In Proceedings of the 10th international conference on Intelligent user interfaces (IUI '05). Association for Computing Machinery, New York, USA, pp. 98–105. DOI:10.1145/1040830.1040859
  9. Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), pp. 359–377. DOI:10.1002/asi.20317
  10. Chen, C., Ibekwe-SanJuan F. & Hou J. (2010). The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 61(7), pp. 1386–1409. DOI:10.1002/asi.21309
  11. Chen, C., Hu, Z., Liu, S. & Tseng, H. (2012). Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opinion on Biological Therapy, 12(5), pp. 593–608. DOI:10.1517/14712598.2012.674507
  12. Chen, C., Dubin, R. & Kim, M. C. (2014). Orphan drugs and rare diseases: a scientometric review (2000–2014). Expert Opinion on Orphan Drugs, 2(7), pp. 709–724. DOI:10.1517/21678707.2014.920251
  13. Chen, H., Zheng, C., Tu, C. & Zhu, Y. (1999). Heavy metal pollution in soils in China: status and countermeasures. Ambio, 28(2), pp. 130–134. DOI:10.1080/027868299304679
  14. Chen, H., Teng, Y., Lu, S., Wang, Y. & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512–513, pp. 143–153. DOI:10.1016/j.scitotenv.2015.01.025
  15. Chen, X., Li, F., Zhang, J., Liu, S., Ou, C., Yan, J. & Sun, T. (2021). Status, fuzzy integrated risk assessment, and hierarchical risk management of soil heavy metals across China: a systematic review. Science of the Total Environment, 785, 147180. DOI:10.1016/j.scitotenv.2021.147180
  16. Cui, Y., Mou, J. & Liu, Y. (2018). Knowledge mapping of social commerce research: a visual analysis using CiteSpace. Electronic Commerce Research, 18, pp. 837–868. DOI:10.1007/s10660-018-9288-9
  17. De Miguel, E., Iribarren, I., Chacón, E., Ordoñez, A. & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66, pp. 505–513. DOI: 0.1016/j.chemosphere.2006.05.065
  18. De Rosa, E., Montuori, P., Sarnacchiaro, P., Di Duca, F., Giovinetti, M. C., Provvisiero, D. P., Cavicchia, C. & Triassi, M. (2022). Spatiotemporal estimation of heavy metals pollution in the Mediterranean Sea from Volturno River, southern Italy: distribution, risk assessment and loads. Chemistry and Ecology, 38(4), pp. 327-355. DOI:10.1080/02757540.2022.2047950
  19. Dhital, S., Rupakheti, D., Rupakheti, M., Yin, X., Liu, Y., Mafiana, J. J., Alareqi, M. M., Mohamednour, H. & Zhang, B. (2022). A scientometric analysis of indoor air pollution research during 1990–2019. Journal of Environmental Management, 320, 115736. DOI:10.1016/j.jenvman.2022.115736
  20. Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69, pp. 131–152. DOI:10.1007/s11192-006-0144-7
  21. Ellegaard, O. & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact?. Scientometrics, 105, pp. 1809–1831. DOI:10.1007/s11192-015-1645-z
  22. Eslami, H., Esmaeili, A., Razaeian, M., Salari, M., Hosseini, A. N., Mobini, M. & Barani, A. (2022). Potentially toxic metal concentration, spatial distribution, and health risk assessment in drinking groundwater resources of southeast Iran. Geoscience Frontiers, 13, 101276. DOI:10.1016/j.gsf.2021.101276
  23. European Parliament and Council of the European Union (2003). Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Official Journal of the European Union, pp. 19–23.
  24. Fakhri, Y., Daraei, H., Hoseinvandtabar, S., Mehri, F., Mahmudiono, T. & Khaneghah, A. M. (2022). The concentration of the potentially toxic element (PTEs) in black tea (Camellia sinensis) consumed in Iran: a systematic review, meta-analysis, and probabilistic risk assessment study. International Journal of Environmental Analytical Chemistry, DOI:10.1080/03067319.2022.2118596.
  25. Fan, P., Lu, X., Yu, B., Fan, X., Wang, L., Lei, K., Yang, Y., Zuo, L. & Rinklebe, J. (2022). Spatial distribution, risk estimation and source apportionment of potentially toxic metal(loid)s in resuspended megacity street dust. Environment International, 160, 107073. DOI:10.1016/j.envint.2021.107073
  26. Fathabad, A. E., Shariatifar, N., Moazzen, M., Nazmara, S., Fakhri, Y., Alimohammadi, M., Azari, A. & Khaneghah, A. M. (2018). Determination of heavy metal content of processed fruit products from Tehran's market using ICP- OES: A risk assessment study. Food and Chemical Toxicology, 115, pp. 436–446. DOI:10.1016/j.fct.2018.03.044
  27. Fei, X., Lou, Z., Xiao, R., Lv, X. & Christakos, G. (2023). Contamination and health risk assessment of heavy metal pollution in soils developed from different soil parent materials. Exposure and Health, 15, pp. 395–408. DOI:10.1007/s12403-022-00498-w
  28. Ferreira-Baptista, L. & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39, pp. 4501–4512. DOI:10.1016/j.atmosenv.2005.03.026
  29. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), pp. 35–41. DOI: 10.2307/3033543
  30. Geng, Y., Zhu, R. & Maimaituerxun, M. (2022). Bibliometric review of carbon neutrality with CiteSpace: evolution, trends, and framework. Environmental Science and Pollution Research, 29, pp. 76668–76686. DOI:10.1007/s11356-022-23283-3
  31. Gong, Y., Zhao, D. & Wang, Q. (2018). An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Research, 147, pp. 440–460. DOI:10.1016/j.watres.2018.10.024
  32. Grochowska, J. K., Tandyrak, R., Augustyniak, R., Łopata, M., Popielarczyk, D. & Templin, T. (2021). How we can disrupt ecosystem of urban lakes – pollutants of bottom sediment in two shallow water bodies. Archives of Environmental Protection, 47(4), pp. 40–54, DOI:10.24425/aep.2021.139501
  33. Guo, K., Liu, Y.F., Zeng, C., Chen, Y.Y. & Wei, X.J. (2014). Global research on soil contamination from 1999 to 2012: A bibliometric analysis. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 64(5), pp. 377–391. DOI:10.1080/09064710.2014.913679
  34. Håkanson, L. (1980). An ecological risk index for aquatic pollution control: a sedimentological approach. Water Research, 14, pp. 975–1001. DOI:10.1016/0043-1354(80)90143-8
  35. Han, M., Yang, F. & Sun, H. (2021). A bibliometric and visualized analysis of research progress and frontiers on health effects caused by PM2.5. Environmental Science and Pollution Research, 28, pp. 30595–30612. DOI:10.1007/s11356-021-14086-z
  36. Hossini, H., Shafie, B., Niri, A. D., Nazari, M., Esfahlan, A. J., Ahmadpour, M., Nazmara, Z., Ahmadimanesh, M., Makhdoumi, P., Mirzaei N. & Hoseinzadeh, E. (2022). A comprehensive review on human health effects of chromium: insights on induced toxicity. Environmental Science and Pollution Research, 29, pp. 70686–70705. DOI:10.1007/s11356-022-22705-6
  37. Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y. & Wu, J. (2012). Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmospheric Environment, 57, pp. 146–152. DOI:10.1016/j.atmosenv.2012.04.056
  38. Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H. & Ding, Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159, pp. 1215–1221. DOI:10.1016/j.envpol.2011.01.037
  39. Huang, J., Guo, S., Zeng, G., Li, F., Gu, Y., Shi, Y., Shi, L., Liu, W. & Peng, S. (2018). A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use. Environmental Pollution, 243, pp. 49–58. DOI:10.1016/j.envpol.2018.08.038
  40. Ivaneev, A. I., Brzhezinskiy, A. S., Karandashev, V. K., Ermolin, M. S. & Fedotov, P. S. (2023). Assessment of sources, environmental, ecological, and health risks of potentially toxic elements in urban dust of Moscow megacity, Russia. Chemosphere, 321, 138142. DOI:10.1016/j.chemosphere.2023.138142
  41. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. & Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), pp. 60–72. DOI:10.2478/intox-2014-0009
  42. Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, pp. 167–182. DOI:10.1093/bmb/ldg032
  43. Ji, A., Wang, F., Luo, W., Yang, R., Chen, J. & Cai, T. (2011). Lead poisoning in China: a nightmare from industrialisation. Lancet, 377(9776), pp. 1474–1476. DOI:10.1016/S0140-6736(10)60623-X
  44. Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A. & Cao, H. (2017). Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168, pp. 1658–1668. DOI:10.1016/j.chemosphere.2016.11.088
  45. Khan, D. A., Qayyum, S., Saleem, S., Ansari, W. M. & Khan, F. A. (2010). Lead exposure and its adverse health effects among occupational worker's children. Toxicology and Industrial Health, 26(8), pp. 497 –504. DOI:10.1177/0748233710373085
  46. Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z. & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, pp. 686–692. DOI:10.1016/j.envpol.2007.06.056
  47. Kleinberg, J. (2003). Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery, 7, pp. 373–397. DOI:10.1023/A:1024940629314
  48. Komárek, M., Ettler, V., Chrastný, V. & Mihaljevič, M. (2008). Lead isotopes in environmental sciences: A review. Environment International, 34, pp. 562–577. DOI:10.1016/j.envint.2007.10.005
  49. Kumari, M. & Bhattacharya, T. (2023). A review on bioaccessibility and the associated health risks due to heavy metal pollution in coal mines: Content and trend analysis. Environmental Development, 46, 100859. DOI:10.1016/j.envdev.2023.100859
  50. Li, F., Yan, J., Wei, Y., Zeng, J., Wang, X., Chen, X., Zhang, C., Li, W., Chen, M. & Lv, G. (2020). PM2.5-bound heavy metals from the major cities in China: Spatiotemporal distribution, fuzzy exposure assessment and health risk management. Journal of Cleaner Production, 286, 124967. DOI:10.1016/j.jclepro.2020.124967
  51. Li, M., Wang, Y., Xue, H., Wu, L., Wang, Y., Wang, C., Gao, X., Li, Z., Zhang, X., Hasan, M., Alruqi, M., Bokhari, A. & Han, N. (2022). Scientometric analysis and scientific trends on microplastics research. Chemosphere, 304, 135337. DOI:10.1016/j.chemosphere.2022.135337
  52. Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z. & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468–469, pp. 843–853. DOI:10.1016/j.scitotenv.2013.08.090
  53. Liu, X., Song, Q., Tang, Y., Li, W., Xu, J., Wu, J., Wang, F. & Brookes, P. C. (2013). Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Science of the Total Environment, 463–464, pp. 530–540. DOI:10.1016/j.scitotenv.2013.06.064
  54. Liu, Z., Yin, Y., Liu, W. & Dunford, M. (2015). Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis. Scientometrics, 103, pp. 135–158. DOI:10.1007/s11192-014-1517-y
  55. López, L. A., Arce, G., Kronenberg, T. & Rodrigues, J. F. D. (2018). Trade from resource-rich countries avoids the existence of a global pollution haven hypothesis. Journal of Cleaner Production, 175, pp. 599–611. DOI:10.1016/j.jclepro.2017.12.056
  56. Lu, X., Zhang, X., Li, L.Y. & Chen, H. (2014). Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environmental Research, 128, pp. 27–34. DOI:10.1016/j.envres.2013.11.007
  57. Luo, H., Wang, Q., Guan, Q., Ma, Y., Ni, F., Yang, E. & Zhang, J. (2022). Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China. Journal of Hazardous Materials, 422, 126878. DOI:10.1016/j.jhazmat.2021.126878
  58. Mahmood, A. & Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry, 7, pp. 91–99. DOI:10.1016/j.arabjc.2013.07.002
  59. Mahmudiono, T., Fakhri, Y., Adiban, M., Sarafraz, M. & Mohamadi, S. (2023). Concentration of potential toxic elements in canned tuna fish: systematic review and health risk assessment. International Journal of Environmental Health Research, DOI:10.1080/09603123.2023.2264205
  60. Masri, S., LeBrón, A. M. W., Logue, M. D., Valencia, E., Ruiz, A., Reyes, A. & Wu, J. (2021). Risk assessment of soil heavy metal contamination at the census tract level in the city of Santa Ana, CA: implications for health and environmental justice. Environmental Science: Processes & Impacts, 23, pp. 812–830. DOI:10.1039/d1em00007a
  61. Men, C., Liu, R., Xu, F., Wang, Q., Guo, L. & Shen, Z. (2018). Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Science of the Total Environment, 612, pp. 138–147. DOI:10.1016/j.scitotenv.2017.08.123
  62. Merigó, J. M. & Yang, J.-B. (2017). A bibliometric analysis of operations research and management science. Omega, 73, pp. 37–48. DOI:10.1016/j.omega.2016.12.004
  63. Muhammad, S., Shah, M.T. & Khan, S. (2011). Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchemical Journal, 98, pp. 334–343. DOI:10.1016/j.microc.2011.03.003
  64. Peng, J., Zhang, S., Han, Y., Bate, B., Ke, H. & Chen, Y. (2022). Soil heavy metal pollution of industrial legacies in China and health risk assessment. Science of the Total Environment, 816, 151632. DOI:10.1016/j.scitotenv.2021.151632
  65. Qin, F., Li, J., Zhang, C., Zeng, G., Huang, D., Tan, X., Qin, D. & Tan, H. (2022). Biochar in the 21st century: a data-driven visualization of collaboration, frontier identification, and future trend. Science of the Total Environment, 818, 151774. DOI:10.1016/j.scitotenv.2021.151774
  66. Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F. & Kim, K.-H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, pp. 365–385. DOI:10.1016/j.envint.2019.01.067
  67. Sabe, M., Pillinger, T., Kaiser, S., Chen, C., Taipale, H., Tanskanen, A., Tiihonen, J., Leucht, S., Correll, C. U. & Solmi, M. (2022). Half a century of research on antipsychotics and schizophrenia: A scientometric study of hotspots, nodes, bursts, and trends. Neuroscience and Biobehavioral Reviews, 136, 104608. DOI:10.1016/j.neubiorev.2022.104608
  68. Saha, K. C. (2003). Review of arsenicosis in West Bengal, India—a clinical perspective. Critical Reviews in Environmental Science and Technology, 33(2), pp. 127–163. DOI:10.1080/10643380390814514
  69. Shahab, A., Hui, Z., Rad, S., Xiao, H., Siddique, J., Huang, L. L., Ullah, H., Rashid, A., Taha, M. R. & Zada, N. (2023). A comprehensive review on pollution status and associated health risk assessment of human exposure to selected heavy metals in road dust across different cities of the world. Environmental Geochemistry and Health, 45, pp. 585–606. DOI:10.1007/s10653-022-01255-3
  70. Shaheen, N., Irfan, N. M., Khan, I. N., Islam, S., Islam, M. S. & Ahmed, M. K. (2016). Presence of heavy metals in fruits and vegetables: Health risk implications in Bangladesh. Chemosphere, 152, pp. 431–438. DOI:10.1016/j.chemosphere.2016.02.060
  71. Shen, Z., Wu, H., Chen, Z., Hu, J., Pan, J., Kong, J. & Lin, T. (2022). The global research of artificial intelligence on prostate cancer: A 22-year bibliometric analysis. Frontiers in Oncology, 12, 843735. DOI:10.3389/fonc.2022.843735
  72. Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society and Information Science, 24, pp. 265–269. DOI:10.1002/asi.4630240406
  73. Smith, A. H., Lingas, E. O. & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of the World Health Organization, 78, pp. 1093–1103. DOI:10.1146/annurev.publhealth.21.1.659
  74. Sultana, Z., Rehman, M. Y. A., Khan, H. K. & Malik, R. N. (2023). Health risk assessment associated with heavy metals through fractioned dust from coal and chromite mines in Pakistan. Environmental Geochemistry and Health, 45, pp. 1617–1633. DOI:10.1007/s10653-022-01285-x
  75. Trujillo-González, J. M., Torres-Mora, M. A., Keesstra, S., Brevik, E. C. & Jiménez-Ballesta, R. (2016). Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Science of the Total Environment, 553, pp. 636–642. DOI:10.1016/j.scitotenv.2016.02.101
  76. Urbano, T., Verzelloni, P., Malavolti, M., Sucato, S., Polledri, E., Agnoli, C., Sieri, S., Natalini, N., Marchesi, C., Fustinoni, S., Vinceti, M. & Filippini, T. (2023). Influence of dietary patterns on urinary excretion of cadmium in an Italian population: A cross-sectional study. Journal of Trace Elements in Medicine and Biology, 80, 127298. DOI:10.1016/j.jtemb.2023.127298
  77. USEPA (United States Environmental protection Agency). (1989). Risk Assessment Guidance for Superfund (RAGS): Volume I. Human Health Evaluation Manual (HHEM)–Part A, Baseline Risk Assessment. Office of Emergency and Remedial Response, Washington DC [EPA/540/1-89/002].
  78. USEPA (2008). Overview: Office of pollution prevention and Toxics laws and programs.
  79. Wang, J., Cai, Y., Yang, J. & Zhao, X. (2021). Research trends and frontiers on source appointment of soil heavy metal: a scientometric review (2000–2020). Environmental Science and Pollution Research, 28, pp. 52764–52779. DOI:10.1007/s11356-021-16151-z
  80. Wei, X., Gao, B., Wang, P., Zhou, H. & Lu, J. (2015). Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicology and Environmental Safety, 112, pp. 186–192. DOI:10.1016/j.ecoenv.2014.11.005
  81. WHO (2011). Guidelines for Drinking-water Quality, fourth ed. World Health Organization, Geneva.
  82. Wu, Q., Hu, W., Wang, H., Liu, P., Wang, X. & Huang, B. (2021). Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China. Science of the Total Environment, 780, 146557. DOI:10.1016/j.scitotenv.2021.146557
  83. Xiao, F., Li, C., Sun, J. & Zhang, L. (2017). Knowledge domain and emerging trends in organic photovoltaic technology: A scientometric review based on CiteSpace analysis. Frontiers in Chemistry, 5, 67. DOI:10.3389/fchem.2017.00067
  84. Xiao, Q., Zong, Y. & Lu, S. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120, pp. 377–385. DOI:10.1016/j.ecoenv.2015.06.019
  85. Yan, J., Qu, Z., Li, F. & Li, H. (2021). Heavy metals in the water environment of Yangtze River Economic Belt: status, fuzzy environmental risk assessment and management. Urban Climate, 40, 100981. DOI:10.1016/j.uclim.2021.100981
  86. Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L. & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642, pp. 690–700. DOI:10.1016/j.scitotenv.2018.06.068
  87. Yang, Y. & Meng, G. (2019). A bibliometric analysis of comparative research on the evolution of international and Chinese ecological footprint research hotspots and frontiers since 2000. Ecological Indicators, 102, pp. 650–665. DOI:10.1016/j.ecolind.2019.03.031
  88. Yi, Y., Yang, Z. & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 159, pp. 2575–2585. DOI:10.1016/j.envpol.2011.06.011
  89. Zhang, J., Jiang, L., Liu, Z., Li, Y., Liu, K., Fang, R., Li, H., Qu, Z., Liu, C. & Li, F. (2021). A bibliometric and visual analysis of indoor occupation environmental health risks: Development, hotspots and trend directions. Journal of Cleaner Production, 300, 126824. DOI:10.1016/j.jclepro.2021.126824
  90. Zheng, N., Liu, J., Wang, Q. & Liang, Z. (2010). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment, 408, pp. 726–733. DOI:10.1016/j.scitotenv.2009.10.075
  91. Zhong, W., Zhang, Y., Wu, Z., Yang, R., Chen, X., Yang, J. & Zhu, L. (2018). Health risk assessment of heavy metals in freshwater fish in the central and eastern North China. Ecotoxicology and Environmental Safety, 157, pp. 343–349. DOI:10.1016/j.ecoenv.2018.03.048
Go to article

Authors and Affiliations

Yingsen Zhang
1
Xinwei Lu
1
Sijia Deng
1
Tong Zhu
1
Bo Yu
1

  1. School of Geography and Tourism, Shaanxi Normal University, China
Download PDF Download RIS Download Bibtex

Abstract

Air quality in Warsaw is mainly affected by two classes of internal polluting sources: transportation and municipal sector emissions, apart from external pollution inflow. Warsaw authorities prepared strategies of mitigating emissions coming from both these sectors. In this study we analyze effects of the implementation of these strategies by modeling air pollution in Warsaw using several mitigation scenarios. The applied model, operating on a homogeneous discretization grid, forecasts the annual average concentrations of individual pollutants and the related population health risk. The results reveal that the measures planned by the authorities will cause almost 50% reduction of the residents’ exposure to NOx pollution and almost 23% reduction of the exposure to CO pollution due to the transport emissions, while the residents’ exposure reductions due to the municipal sector are 10% for PM10, 15% for PM2.5, and 26% for BaP. The relatively smaller reductions due to municipal sector are connected with high transboundary inflow of pollutants (38% for PM10, 45% for PM2.5, 36% for BaP, and 45% for CO). The implementation of the discussed strategies will reduce the annual mean concentrations of NOx and PM2.5 below the limits of the Ambient Air Quality Directive. Despite the lower exposure reduction, the abatement of municipal sector emissions results in a very significant reduction in health risks, in particular, in the attributable mortality and the DALY index. This is due to the dominant share of municipal pollution (PM2.5 in particular) in the related health effects.
Go to article

Bibliography

  1. Bebkiewicz, K., Chłopek, Z., Lasocki, J., Szczepański, K. & Zimakowska-Laskowska, M. (2020). The inventory of pollutants hazardous to the health of living organisms, emitted by road transport in Poland between 1990 and 2017, Sustainability, 12, pp. 1–2, 5387, DOI: 10.3390/su12135387
  2. Berkowicz, R., Winther, M. & Ketzel, M. (2006). Traffic pollution modelling and emission data. Environmental Modelling & Software, 21, pp. 454–460. DOI: 10.1016/j.envsoft.2004.06.013
  3. Buchholz, S., Krein, A., Junk, J., Heinemann, G. & Hoffmann, L. (2013). Simulation of Urban-Scale Air Pollution Patterns in Luxembourg: Contributing Sources and Emission Sce-narios. Environmental Modeling & Assessment, 18, pp. 271–283, DOI: 10.1007/s10666-012-9351-1
  4. Calori, G., Clemente, M., De Maria, R., Finardi, S., Lollobrigida, F., Tinarelli, G. (2006). Air quality integrated modelling in Turin urban area. Environmental Modelling & Software, 21, pp. 468–476, DOI:10.1016/j.envsoft.2004.06.009
  5. Costa, S., Ferreira, J., Silveira, C., Costa, C., Lopes, D., Revals, H., Borrego, C., Robeling, P., Miranda, A.I., Texeira, J.P. (2014). Integrating Health on Air Quality Assessment - Review Report on Health Risks of Two Major European Outdoor Air Pollutants: PM and NO2. Journal of Toxicology and Environmental Health, Part B, 17(6), pp. 307–340. DOI: 10.1080/10937404.2014.946164
  6. Degraeuwe, B., Thunis, P., Clappier, A., Weiss, M., Lefebvre, W., Janssen, S., Vranckx, S. (2017). Impact of passenger car NOx emissions on urban NO2 pollution – Scenario analysis for 8 European cities. Atmospheric Environment, 171, pp. 330–337, DOI: 10.1016/j.atmosenv.2017.10.040
  7. Degraeuwe, B., Pisoni, E., Peduzzi, E., De Meij, A., Monforti-Ferrario, F., Bodis, K., Mascherpa, A., Astorga-Llorens, M., Thunis, P and Vignati, E. (2019). Urban NO2 Atlas (EUR 29943 EN), Publications Office of the European Union, Luxembourg.
  8. EC (2008). AAQD, 2008. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. https://eur-lex.europa.eu/eli/dir/2008/50/oj
  9. EC (2015). Urban air pollution – what are the main sources across the world? https://ec.europa.eu/jrc/en/news/what-are-main-sources-urban-air-pollution
  10. EC (2016). SHERPA: a computational model for better air quality in urban areas.
  11. European Commission Report. https://ec.europa.eu/jrc/en/news/sherpa-computational-model-better-air-quality-urban-areas
  12. EC (2019). Air quality: traffic measures could effectively reduce NO2 concentrations by 40% in cities. https://ec.europa.eu/jrc/en/news/air-quality-traffic-measures-could-effectively-reduce-no2-concentrations-40-europe-s-cities
  13. EEA (2018). Air quality in Europe — 2018 report. EEA Report, No 12/2018. https://www.eea.europa.eu/publications/air-quality-in-europe-2018
  14. EEA (2019). Air quality in Europe — 2019 report. EEA Report, No 10/2019 https://www.eea.europa.eu/publications/air-quality-in-europe-2019.
  15. Holnicki, P., Kałuszko, A., Stankiewicz, K. (2016). Particulate matter air pollution in an urban area. A case study. Operations Research and Decisions, 3, pp. 43–56. DOI: 10.5277/ord160303
  16. Holnicki, P., Kałuszko, A., Nahorski, Z., Stankiewicz, K., & Trapp, W. (2017a) Air quality modeling for Warsaw agglomeration. Archives of Environmental Protection, 43, pp. 48–64, DOI: 10.1515/aep-2017-0005
  17. Holnicki, P., Tainio, M., Kałuszko, A., Nahorski, Z. (2017b). Burden of mortality and disease attributable to multiple air pollutants in Warsaw, Poland. International Journal of Environmental Research and Public Health, 14, 1359, DOI:10.3390/ijerph14111359
  18. Holnicki, P., Kałuszko, A., Nahorski, Z., Tainio, M. (2018). Intra-urban variability of the intake fraction from multiple emission sources. Atmospheric Pollution Research, 9, pp. 1184–1193, DOI: 10.1016/j.apr.2018.05.003
  19. Juda-Rezler, K., Reizer. M., Maciejewska, K., Błaszczak, B., Klejnowski, K. (2020). Characterization of atmospheric PM2.5 sources at a Central European urban background site. Science of the Total Environment, 713, 136729 pp. 1–15. DOI: 10.1016/j.scitotenv.2020.136729
  20. Karagulian, F., Belis, C.A., Dora, C.F.C., Prüss-Ustün, A.M., Bonjour, S., Adair-Rohani, H., Amann, M. (2015). Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, pp. 475–483, DOI: 10.1016/j.atmosenv.2015.08.087
  21. Kiesewetter, G., Borken-Kleefeld, J., Schöpp, W., Heyes, C., Thunis, P., Bessagnet. B., Terrenoire, E., Gsella, A., and Amann, M. (2014). Modelling NO2 concentrations at the street level in the GAINS integrated assessment model: projections under current legislation. Atmospheric Chemistry and Physics, 14, pp. 813–829. DOI: 10.5194/acp-14-813-2014
  22. Mediavilla-Sahagún, A., ApSimon, H.M. (2006). Urban scale integrated assessment for London: Which emission reduction strategies are more effective in attaining prescribed PM10 air quality standards by 2005? Environmental Modelling & Software, 21, pp. 501–513, DOI:10.1016/j.envsoft.2004.06.010
  23. Pisoni, E., Thunis, P., Clappier, A. (2019). Application of the SHERPA source-receptor relationships, based on the EMEP MSC-W model, for the assessment of air quality policy scenarios. Atmospheric Environment, X4, 100047, pp. 1–11. DOI: 10.1016/j.aeaoa.2019.100047
  24. Połednik, B., Piotrowicz, A., Pawłowski, L., Guz, Ł. (2018). Traffic-related particle emissions and exposure on an urban road. Archives of Environmental Protection, 44, no. 2, pp. 83–93, DOI: 10.24425/119706
  25. Rith, M., Fillone, A.M., Biona, J.B.M.M. (2020). Energy and environmental benefits and policy implications for private passenger vehicles in an emerging metropolis of Southern Asia – A case study of Metro Manila. Applied Energy, 275, 115240, DOI: 10.1016/j.apenergy.2020.115240
  26. Tainio, M. (2015). Burden of disease caused by local transport in Warsaw, Poland. Journal of Transport & Health, 2, pp. 423–433, DOI: 10.1016/j.jth.2015.06.005
  27. Thunis, P., Clappier, A., Tarrason, L., Cuvelier, C., Monteiro, A., Pisoni, E., Wesseling, J., Belis, C.A., Pirovano, G., Janssen, S., Guerreiro, C., Peduzzi, E. (2019). Source apportionment to support air quality planning: Strengths and weaknesses of existing approaches. Environment International, 130, pp. 1-12, DOI: 10.1016/j.envint.2019.05.019
  28. Thunis, P., Degraeuwe, B., Pisoni, E., Ferrari, F., Clappier, A. (2016). On the design and assessment of regional air quality plans: The SHERPA approach. Journal of Environmental Management, 183, pp. 952-958, DOI: 10.1016/j.jenvman.2016.09.049
  29. WHO (2015). Database on source apportionment studies for particulate matter in the air (PM10 and PM2.5). https://www.who.int/quantifying_ehimpacts/global/source_apport/en/
  30. WHO (2018). Ambient (outdoor) air pollution. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
  31. WIOŚ (2012). Environment Quality in Mazovian Voivodship in the year 2012. Voivodship Inspectorate of Environment Protection. Report for the year 2012. (in Polish).
  32. Dieselnet_LD (2019). https://dieselnet.com/standards/eu/ld.php 15 JUNE 2020
  33. Instalreporter (2013). https://instalreporter.pl/ogolna/porownanie-emisji-zanieczyszczen-roznych-technologii-grzewczych-wg-raportu-ipts-dla-komisji-europejskiej 25 JAN 2018 (in Polish).
  34. Interia (2019). https://biznes.interia.pl/gospodarka/news-mieszkancy-warszawy-chca-wymieniac-kopciuchy-na-nowe-zrodla-,nId,4268597 26 DEC 2019 (in Polish).
  35. SMOGLAB (2016). https://smoglab.pl/warszawa-ma-prawie-dwa-razy-wiecej-zarejestrowa-nych-pojazdow-na-km2-niz-krakow-wroclaw-i-berlin 20 OCT 2019 (in Polish).
  36. Transportpolicy (2018). https://www.transportpolicy.net/standard/eu-heavy-duty-emissions 10 DEC 2018.
  37. UM (2020). https://www.um.warszawa.pl/aktualnosci/deklaracja-stolicy-na-rzecz-poprawy-jako-ci-powietrza 26 FEB 2020 (in Polish).
Go to article

Authors and Affiliations

Piotr Holnicki
1
Andrzej Kałuszko
1
Zbigniew Nahorski
1

  1. Systems Research Institute, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

Coastal areas face greater risk in terms of health and the environment. They are the most vulnerable to impacts resulting from climate change. Coastal areas with higher population density also have more environmental problems, such as natural disasters. Environmental health risks from chemicals and microbes continue threatening people living on small islands. Therefore, this study aims to: 1) conduct a chemical risk analysis of heavy metals Pb, Cr(VI), and Ni; 2) analyse the microbial risk posed by drinking water consumed daily by people on small islands. A method used to analyse the chemical risk of heavy metals was the environment health risk assessment (EHRA), whereas to analyse the microbial risk in small islands, the quantitative microbial risk assessment (QMRA) was used. The results showed that the concentration of heavy metals in drinking water was <0.0012 mg∙dm–3 for Pb, <0.01 mg∙dm–3 for Cr(VI), and <0.0019 mg∙dm–3 for Ni. The three heavy metals showed worrying results. Assessment and obtained risk quotient were less than one (RQ < 1) in all samples. Meanwhile, the microbial analysis found Escherichia coli, Acinetobacter calcoaceticus, Enterobacter sp ., and Citrobacter sp ., with risk characterised from low to high. Risk management is needed to control environmental health risks posed by heavy metals and the microbiological characteristics of drinking water on the small islands of the Spermonde Archipelago.
Go to article

Authors and Affiliations

Agus B. Birawida
1
ORCID: ORCID
Anwar Daud
1
ORCID: ORCID
Erniwati Ibrahim
1
ORCID: ORCID
Healthy Hidayanty
2
ORCID: ORCID
Nurlia Sila
1
ORCID: ORCID
Maming Maming
3
ORCID: ORCID
Muhammad Nur
4
ORCID: ORCID
Ain Khaer
5
ORCID: ORCID
Andi I. Arundhana
6
ORCID: ORCID
Arsunan Arsin
7
ORCID: ORCID

  1. Hasanuddin University, Department of Environmental Health, Jl. Perintis Kemerdekaan Km 10, Makassar, South Sulawesi, 90245, Indonesia
  2. Hasanuddin University, Department of Nutrition, Jl. Perintis Kemerdekaan Km 10, Makassar, South Sulawesi, 90245, Indonesia
  3. Hasanuddin University, Department of Chemistry, Jl. Perintis Kemerdekaan Km 10, Makassar, South Sulawesi, 90245, Indonesia
  4. Hasanuddin University, Department of Mathematics, Jl. Perintis Kemerdekaan Km 10, Makassar, South Sulawesi, 90245, Indonesia
  5. Health Polytechnic, Department of Environmental Health, Jl.Wijaya Kusuma 1 No.2, Makasssar, South Sulawesi, 90222, Indonesia
  6. The University of Sidney, Faculty of Medicine and Health, Science Rd, Camperdown NSW 2050, Australia
  7. Hasanuddin University, Department of Epidemiology, Jl. Perintis Kemerdekaan Km 10, Makassar, South Sulawesi, 90245, Indonesia

This page uses 'cookies'. Learn more