Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A numerical model of the high-speed train carriage fire is established in this study. The influence of ceilings, sidewalls, luggage racks, seats, and floors on the heat release rate (HRR) of the high-speed train is studied by numerical methods. The results indicate that the heat release rate per unit area (HRRPUA) of ceiling and seat material dramatically influences the peak HRR and the time to peak HRR of train carriage fire. When the peak HRRPUA of interior ceiling material 1 decreases from 326 to 110 kW/m2, the peak HRR of the high-speed train fire decreases from 36.4 to 16.5 MW, with a reduction ratio of 54.7%. When seat materials with low HRRPUA are used, the peak HRR reduction ratio is 44.8%. The HRRPUA of the sidewall, luggage rack, and floor materials has little effect on the peak HRR of the carriage fire. However, the non-combustible luggage rack can delay the time when the HRR reaches its peak.
Go to article

Authors and Affiliations

Yuanlong Zhou
1
Haiquan Bi
2
Honglin Wang
2

  1. University of Science and Technology of China, State Key Laboratory of Fire Science, Hefei, Anhui 230026, China
  2. Southwest Jiaotong University, School of Mechanical Engineering, Chengdu 610031, China
Download PDF Download RIS Download Bibtex

Abstract

The article describes the results of combustion of a mixture of PCOME (purified cooking oil esters) and bioethanol in the compression ignition Perkins 1104C-44 engine. The engine was prepared for use with the classic type of fuel – diesel oil, not biofuels. That is why bioethanol was added to ester in tests so that the basic physicochemical properties of the obtained mixture were as close as possible to diesel fuel. Thanks to this, the use of such fuel in the future would not require reworking or adjusting the settings of selected elements of the engine power supply system. During this case study, the engine performance and heat release rate were analyzed. For comparison, tests were carried out while powering the engine with ester fuel, 10 and 20 per cent mixtures of bioethanol and PCOME. The speed and load characteristics for each fuel were determined. This article presents selected characteristics where the biggest differences were noticed.

Go to article

Authors and Affiliations

M. Bednarski
P. Orliński
M. Wojs
M. Gis

This page uses 'cookies'. Learn more