Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of surveys to assess the attractiveness of centralized heat supply systems in comparison with other heat sources. The heat source is an important element of the heat supply system which determines heating costs, comfort and environmental impact. The decision on the choice of the type of heat supply system is usually made by the investor or designer. Sometimes the equipment supplier or contractor has a part in this decision. The choice can be influenced by many different factors, also resulting from the specific location of the building. This is only partly determined by local law in the form of a local spatial development plan. the technical conditions (i.e. availability of heating or gas network), economic and financial, as well as much more subjective factors, such as the designer’s or contractor’s preference are also important. Aversion to district heating is growing, even when there are favorable conditions and the possibility of connecting the building to the heating network. Instead, a gas boiler or electrically powered heat pump is selected. This raises the question of whether such decisions are right and how they can be justified. As a research method, surveys were used, which were conducted among people who already have or will have an impact on design and investment decisions in the near future. The obtained results confirmed a large interest in district heating, appreciating their advantages in comparison with other methods of heat generation. The respondents also had the disadvantages that may lead to the use of an alternative methods of heat supplying in mind.

Go to article

Authors and Affiliations

Grzegorz Bartnicki
Bogdan Nowak
Download PDF Download RIS Download Bibtex

Abstract

Experimental and numerical study of the steady-state cyclonic vortex from isolated heat source in a rotating fluid layer is described. The structure of laboratory cyclonic vortex is similar to the typical structure of tropical cyclones from observational data and numerical modelling including secondary flows in the boundary layer. Differential characteristics of the flow were studied by numerical simulation using CFD software FlowVision. Helicity distribution in rotating fluid layer with localized heat source was analysed. Two mechanisms which play role in helicity generation are found. The first one is the strong correlation of cyclonic vortex and intensive upward motion in the central part of the vessel. The second one is due to large gradients of velocity on the periphery. The integral helicity in the considered case is substantial and its relative level is high.

Go to article

Bibliography

[1] G.P. Bogatyrev. Excitation of a cyclonic vortex or a laboratory model for a tropical cyclone. Journal of Experimental and Theoretical Physics Letters, 51(11):630–633, 1990.
[2] G.P. Bogatyrev and B.L. Smorodin. Physical model of the rotation of a tropical cyclone. Journal of Experimental and Theoretical Physics Letters, 63(1):28–32, 1996. doi: 10.1134/1.566958.
[3] G.P. Bogatyrev, I.V. Kolesnichenko, G.V. Levina and A.N. Sukhanovsky. Laboratory model of generation of a large-scale spiral vortex in a convectively unstable rotating fluid. Izvestiya, Atmospheric and Oceanic Physics, 42(4): 423–429, 2006. doi: 10.1134/S0001433806040025.
[4] V. Batalov, A. Sukhanovsky and Frick P. Laboratory study of differential rotation in a convective rotating layer. Geophysical & Astrophysical Fluid Dynamics, 104(4):349–368, 2010. doi: 10.1080/03091921003759876.
[5] A. Sukhanovskii, A. Evgrafova and E. Popova. Laboratory study of a steady-state convective cyclonic vortex. Quarterly Journal of the Royal Meteorological Society, 142(698):2214–2223, 2016. doi: 10.1002/qj.2823.
[6] S.S. Moiseev, R.Z. Sagdeev, A.V. Tur, G.A. Khomenko, and A.M. Shukurov. Physical mechanism of amplification of vortex disturbances in the atmosphere, Soviet Phys. Dokl. 28:926–928, 1983.
[7] E. Levich and E. Tzvetkov. Helical cyclogenesis. Physics Letters A, 100(1):53–56, 1984. doi: 10.1016/0375-9601(84)90354-2.
[8] E. Levich and E. Tzvetkov. Helical inverse cascade in three-dimensional turbulence as a fundamental dominant mechanism in mesoscale atmospheric phenomena. Physics Reports, 128(1): 1–37, 1985. doi: 10.1016/0370-1573(85)90036-5.
[9] D.K. Lilly. The structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabilization. Journal of Atmospheric Sciences, 43(2):126–140, 1986.
[10] A. Eidelman, T. Elperin, I. Gluzman, and E. Golbraikh. Helicity of mean and turbulent flow with coherent structures in Rayleigh-Bénard convective cell. Physics of Fluids, 26(6), 2014. doi: 10.1063/1.4881939.
[11] F. Scarano and M.L. Riethmuller. Advances in iterative multigrid PIV image processing. Experiments in Fluids, 29(Suppl1):S051–S060, 2000. doi: 10.1007/s003480070007.
[12] A. Sukhanovskii, A. Evgrafova and E. Popova. Horizontal rolls over localized heat source in a cylindrical layer. Physica D: Nonlinear Phenomena, 316:23–33, 2016. doi: 10.1016/j.physd.2015.11.007.
[13] H.K. Moffat. Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press, Cambridge, 1978.
[14] R. Stepanov, E. Golbraikh, P. Frick and A. Shestakov. Hindered energy cascade in highly helical isotropic turbulence. Physical Review Letters, 115(23):234501, 2015. doi: 10.1103/PhysRevLett.115.234501.
[15] A.V. Evgrafova, G.V. Levina and A.N. Sukhanovskii. Study of vorticity and helicity distribution in advective flow with secondary structures. Computational Continuum Mechanics, 6(4):451–459, 2013. doi: 10.7242/1999-6691/2013.6.4.49 (in Russian).
Go to article

Authors and Affiliations

A. Sukhanovskii
1
A. Evgrafova
1
E. Popova
1

  1. Institute of Continuous Media Mechanics, Perm, Russia
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this paper is to depict the effect of diffusion and internal heat source on a two-temperature magneto-thermoelastic medium. The effect of magnetic field on two-temperature thermoelastic medium within the three-phase-lag model and Green-Naghdi theory without energy dissipation i discussed. The analytical method used to obtain the formula of the physical quantities is the normal mode analysis. Numerical results for the field quantities given in the physical domain are illustrated on the graphs. Comparisons are made with results of the two models with and without diffusion as well as the internal heat source and in the absence and presence of a magnetic field.
Go to article

Authors and Affiliations

Othman Mohamed I.
Said Samia M.
Download PDF Download RIS Download Bibtex

Abstract

The work deals with the heat analysis of generalized Burgers nanofluid over a stretching sheet. The Rosseland approximation is used to model the non-linear thermal radiation and incorporated non-uniform heat source/sink effect. The governing equations reduced to a set of nonlinear ordinary differential equations under considering the suitable similarity transformations. The obtained ordinary differential equations equations are solved numerically by Runge-Kutta-Fehlberg order method. The effect of important parameters on velocity, temperature and concentration distributions are analyzed and discussed through the graphs. It reveals that temperature increases with the increase of radiation and heat source/sink parameter.
Go to article

Authors and Affiliations

Ganesh Kumar K.
B.J. Gireesha
G.K. Ramesh
Download PDF Download RIS Download Bibtex

Abstract

In the paper the use of the artificial neural network to the control of the work of heat treating equipment for the long axisymmetric steel

elements with variable diameters is presented. It is assumed that the velocity of the heat source is modified in the process and is in real

time updated according to the current diameter. The measurement of the diameter is performed at a constant distance from the heat source

(∆z = 0). The main task of the model is control the assumed values of temperature at constant parameters of the heat source such as radius

and power. Therefore the parameter of the process controlled by the artificial neural network is the velocity of the heat source. The input

data of the network are the values of temperature and the radius of the heated element. The learning, testing and validation sets were

determined by using the equation of steady heat transfer process with a convective term. To verify the possibilities of the presented

algorithm, based on the solve of the unsteady heat conduction with finite element method, a numerical simulation is performed. The

calculations confirm the effectiveness of use of the presented solution, in order to obtain for example the constant depth of the heat

affected zone for the geometrically variable hardened axisymmetric objects.

Go to article

Authors and Affiliations

A. Bokota
A. Kulawik
J. Wróbel
Download PDF Download RIS Download Bibtex

Abstract

Solar collectors are used increasingly in single-family housing. Their popularity depends on many factors, including the price-to-productivity ratio, which in turn results from the development of solar collector technology as well as entire systems. This development consists of many aspects, including those related to the modernization of control systems and measuring of solar collector systems. Currently used systems offer, among others, the ability to determine the approximate solar heat gains using the sensors necessary for normal control of the sensor system. The paper analyzes, on the example of one facility, how such installations work in Polish conditions. An installation consisting of 3 solar collectors has been selected for analysis, supporting the preparation of hot utility water for a single-family residential building. The detailed analysis concerned days with high heat gains compared to the average heat demand for hot water preparation in the building. The temperature verification method (TVM) of the calculated solar heat gains by the solar system controller has been proposed. Then, differences in measurements according to two methods (controller and TVM) have been presented at various characteristic moments of the installation’s operation (start- -up, stop) and during continuous operation. It has been shown that during the day gains measured by the controller can be 15% lower than gains measured by the TVM method. The check has been carried out at a daily sunlight value higher than 4.8 kWh/m2 measured on a horizontal plane. The ratio of heat energy supplied to the domestic hot water storage tank to the measured insolation has been 34%. The sum of annual solar heat gains measured by the controller and TVM differed by 5.2%.
Go to article

Authors and Affiliations

Piotr Olczak
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland

This page uses 'cookies'. Learn more