Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The following work analyzes the effect of the composition of a hemp-lime composite on key mechanical and physical properties. The article contains results from testing the compressive strength, vapor permeability, and thermal conductivity of the composite, depending on the composition of the mix. The mixes differed from each other in binder composition and in the proportion of binder to hemp shives. The obtained results were compared with the results from other scientific literature. Based on this, conclusions were drawn that the binder composition is of secondary importance for the analyzed physical and mechanical properties of the hemp-lime composite. The main property that determines the values of the thermal conductivity coefficient as well as the compression strength is the density of the material, which depends on the proportion of binder to aggregate and the level of compaction of the mix. The value of the diffusion resistance coefficient of the analyzed material was very low regardless of the composition of the composite.

Go to article

Authors and Affiliations

Wojciech Piątkiewicz
Piotr Narloch
Barbara Pietruszka
Download PDF Download RIS Download Bibtex

Abstract

The present paper presents results of a study on hemp-lime composite – a novel building material which is gaining attention thanks to its pro-ecological values, as well as interesting hygrothermal characteristics. The thermal conductivity and vapour permeability tests were performed on composites which varied in terms of composition and density as a result of use of various binders, different proportions of ingredients in a mixture and different compaction level during manufacturing with the use of the tamping method. The results obtained, indicating low thermal conductivity and very high vapor permeability, were tabulated with results of compressive strength obtained in the previous study on the same types of composites. The conclusions emphasise supreme importance of apparent density on properties of material, rather than binder composition – which exerts a significant effect only on compressive strength. The results of the performed tests were applied for determination of external walls’ construction, which were subjected to analysis of risk of interstitial water vapor condensation according to Glaser method. For locations in all Polish climatic zones, no condensation or only a small amount thereof, in which case it does not accumulate in subsequent years, was found.
Go to article

Authors and Affiliations

Michał Gołębiewski
1
Barbara Pietruszka
2

  1. Warsaw University of Technology, Faculty of Architecture, ul. Koszykowa 55, 00-659 Warsaw, Poland
  2. Building Research Institute, Department of Thermal Physics, Acoustics and Environment, ul. Ksawerów 21, 00-656 Warsaw, Poland

This page uses 'cookies'. Learn more