Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The U-type ferrite is a kind of hexagonal ferrite, and it is known as a microwave absorber in the X-band. The magnetic and dielectric loss of the U-type ferrite change to the composition and coating layer, etc. In this study, the silicon oxide layer was coated on the substituted U-type ferrites to improve microwave absorption characteristics. The complex permittivity and complex permeability were measured using toroidal specimens that were press-molded and the measured frequency range was set from 2-18 GHz. The improvement of the microwave absorption rate was different according to the type of the substituted U-type ferrites. Only in the substituted U-type ferrites with nickel and zinc, an improvement in the microwave absorption rate due to enhancement of magnetic loss was confirmed. The highest microwave absorption was 99.9% at 9.6 GHz, which was S_Z0.5U.

Go to article

Authors and Affiliations

Kwang-Pil Jeong
Jeong-Gon Kim
Su-Won Yang
Jin-Hyuk Choi
Seung-Young Park
Download PDF Download RIS Download Bibtex

Abstract

The magnetic properties of the U-type ferrite synthesized by a sol-gel process had studied by substituting cobalt with manganese or zinc in cobalt-based U-type ferrite. The substituted U-type ferrite showed a dominant crystal structure at a different substitution ratio of manganese and zinc. The change of the starting temperature of U-type ferrite formation according to substitutional elements was confirmed by TG-DTA analysis. In the case of manganese substitution, the starting temperature of U-type ferrite formation lowered, and on the contrary, when zinc was substituted, it became higher. The magnetic properties of the U-type ferrite substituted with manganese showed a tendency that the saturation magnetization was decreased and the coercivity was increased as the manganese ratio increased. The highest saturation magnetization was 57.9 emu/g in the specific composition (Ba4Co0.5Zn1.5Fe36O60) substituted with zinc.

Go to article

Authors and Affiliations

Kwang-Pil Jeong
Jeong-Gon Kim
Su-Won Yang
Jae-Ho Yun
Jin-Hyuk Choi

This page uses 'cookies'. Learn more