Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The secondary aluminium alloys are very important material in actual industry from economic and ecological point of view. The secondary aluminium used for production of casts, however, contains some elements, i.e. iron, – affecting physical, chemical and mechanical behaviour. The subject of our investigation has been corrosion behaviour in natural atmosphere of the hypoeutectic AlSi7Mg0.3 cast alloys with various content of iron, because the Fe content affects not only mechanical properties but corrosion resistance, as well. Three types of the AlSi7Mg0.3 cast alloys were exposed for 9 months in natural atmosphere and the measure of their degradation by corrosion was found by determination of the weight loss and the light microscopy. In addition, a scanning electron microscopy (SEM) analyses and evaluation of surface changes were used. The corrosion behaviour in natural atmosphere was compared to results of the carried out electrochemical and exposure laboratory experiments in chloride solutions.

Go to article

Authors and Affiliations

L. Kuchariková
ORCID: ORCID
T. Liptáková
ORCID: ORCID
E. Tillová
ORCID: ORCID
M. Bonek
D. Medvecká
Download PDF Download RIS Download Bibtex

Abstract

This paper details the properties, microstructures, and morphologies of the fly ash-based alkali-activated material (AAM), also known as geopolymers, under various steam curing temperatures. The steam curing temperature result in subsequent high strengths relative to average curing temperatures. However, detailed studies involving the use of steam curing for AAM remain scarce. The AAM paste was prepared by mixing fly ash with an alkali activator consisting of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH). The sample was steam cured at 50°C, 60°C, 70°C, and 80°C, and the fresh paste was tested for its setting time. The sample also prepared for compressive strength, density, and water absorption testings. It was observed that the fastest time for the fly ash geopolymer to start hardening was at 80°C at only 10 minutes due to the elevated temperature quickening the hydration of the paste. The compressive strength of the AAM increased with increasing curing time from 3 days to 28 days. The AAM’s highest compressive strength was 61 MPa when the sample was steam cured at 50°C for 28 days. The density of AAM was determined to be ~2122 2187 kg/m3, while its water absorption was ~6.72-8.82%. The phase analyses showed the presence of quartz, srebrodolskite, fayalite, and hematite, which indirectly confirms Fe and Ca’s role in the hydration of AAM. The morphology of AAM steam-cured at 50°C showed small amounts of unreacted fly ash and a denser matrix, which resulted in high compressive strength.
Go to article

Authors and Affiliations

Rafiza Abd Razak
1 2
ORCID: ORCID
Sh. Nur Syamimi Sy. Izman
2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1
ORCID: ORCID
Zarina Yahya
1 2
ORCID: ORCID
Alida Abdullah
1
ORCID: ORCID
Rosnita Mohamed
1
ORCID: ORCID

  1. Universiti Malaysia Perlis, Geopolymer and Green Technology, Center of Excellence (CEGeoGTech), Kangar, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, Perlis, Malaysia

This page uses 'cookies'. Learn more