Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper describes the design and test of a new high-current electronic current transformer based on a Rogowski coil. For better performances, electronic current transformers are used to replace conventional electro-magnetic inductive current transformers based on ferromagnetic cores and windings to measure high-current on the high voltage distribution grids. The design of a new high-current electronic current transformer is described in this paper. The principal schemes of the prototype and partial evaluation results are presented. Through relative tests it is known that the prototype has a wide dynamic range and frequency band, and it can allow high accuracy measurements.

Go to article

Authors and Affiliations

Ming Zhang
Kaicheng Li
Shunfan He
Jun Wang
Download PDF Download RIS Download Bibtex

Abstract

Arsenic is the only beneficial impurity for copper electrorefining through inhibiting anode passivation and the formation of floating slimes. The behaviour of copper anodes with different content of arsenic were studied at high current density (>280 A/m 2). It showed that low arsenic anodes (As < 300 ppm) easily generated anode passivation, floating slimes and cathode nodules during the electrorefining proccess. The floating slimes, electrolyte, cathode and anode were observed and analyzed. As result, low arsenic anodes were more likely to be passivated due to their microstructure defects and irregular microstructure. Increasing electrolyte temperature and addition of glycerol were propitious to reduce low arsenic anodes’ passivation. The floating slimes occured when the concentration of As(III) in electrolyte decreased to 1 g/L, and they would be precipitated by polyacrylamide. All measures greatly improved the cathode quality at current density of 300 A/m 2.
Go to article

Authors and Affiliations

Xuyong Zhang
1
ORCID: ORCID
Silei Chen
1
ORCID: ORCID
Lu Li
1
ORCID: ORCID
Peng Yang
1
ORCID: ORCID

  1. Jiangxi Copper Technology Institute Co., Ltd, Nanchang 330096, Jiangxi, PR China

This page uses 'cookies'. Learn more