Search results

Filters

  • Journals
  • Autorzy
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Low Temperature Joining Technique (LTJT) using silver compounds enables to significantly increase the thermal conductivity between joined elements, which is much higher than for soldered joints. However, it also makes difficult to measure the thermal conductivity of the joint. The Laser Flash Analysis (LFA) is a non-intrusive method of measuring the temperature rise of one surface of a specimen after excitation with a laser pulse of its other surface. The main limitation of the LFA method is its standard computer software, which assumes the dimensions of a bonded component to be similar to those of the substrate, because it uses the standard Parker’s formula dedicated for one-dimensional heat flow. In the paper a special design of measured specimen was proposed, consisting of two copper plates of different size joined with the sintered silver layer. It was shown that heat properties of these specimens can also be measured after modifying the LFA method. The authors adapted these specimens by masking the false heat signal sourced from the uncovered plate area. Another adaptation was introducing a correcting factor of the heat travel distance, which was calculated with heat-flow simulations and placed into the Parker’s formula. The heat-flow simulated data were compared with the real LFA measurement results, which enabled estimation of the joint properties, e.g. its porosity.
Go to article

Authors and Affiliations

Jerzy Szałapak
Konrad Kiełbasiński
Jakub Krzemiński
Anna Młożniak
Elżbieta Zwierkowska
Małgorzata Jakubowska
Radosław Pawłowski
Download PDF Download RIS Download Bibtex

Abstract

Fractional slot PMSM motors enable high power density factors to be obtained provided that their electromagnetic circuit, appropriate mechanical structure and cooling system are properly designed, as well as when operating at a high frequency of power supply voltage (400–800 Hz) with high magnetic saturation and high current loads (approx. 12–15 A/mm2). Such operating conditions, especially in the case of fractional slot motors, may be the reason for excessive rotor losses, mainly in the rotor yoke and permanent magnets. One of the conditions for obtaining high values of continuous power of the motor is the reduction of these losses. This paper presents selected design methods for limiting the value of rotor losses with simultaneous consideration of their influence on other motor parameters. The analysiswas carried out for aPMSMmotor with an external rotorweighting approx. 10 kg and a maximum power of 50 kW at a rotational speed of 4 800 rpm.
Go to article

Authors and Affiliations

Tomasz Wolnik
1
ORCID: ORCID
Szczepan Opach
1
ORCID: ORCID
Łukasz Cyganik
1
ORCID: ORCID
Tomasz Jarek
1
ORCID: ORCID
Vojtech Szekeres
1
ORCID: ORCID

  1. Łukasiewicz Research Network – Institute of Electrical Drives and Machines KOMEL, Al. Rozdzienskiego 188, 40-203 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In order to meet the application requirements of high-power mobile inductively-coupled power transfer (ICPT) equipment, the structure of the dual transmitter and pickup can be used to improve the transmission power of the ICPT system. However, this structure cannot easily describe the change of the mutual inductance parameter in the moving state, making the mathematical model difficult to establish. The change of load parameters during the movement will affect the current and voltage at the transmitter and pickup coils. Aiming at these problems, this paper proposes a dual transmitter and pickup ICPT system based on inductor-capacitor-inductor (LCL) compensation network, and analyzes its power trans- mission efficiency. By setting the shape and size of the coil, the influence of the change of the mutual inductance parameters on the system efficiency during the movement is reduced. The changes of the mutual inductance parameters of the ICPT system under the moving state are simulated by changing the coupling coefficient in the PSpice software. The results show that the structure of the ICPT system used in this paper can improve the output power and reduce the influence of the system when the load changes.

Go to article

Authors and Affiliations

Xin Gao
Xin Li
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we describe the development and design procedure of the new kind of coaxial TEm,1 modes generator based on ring resonator with coupling apertures. The generator enables excitation of subsequent TEm,1 modes in a cylindrical waveguide. The proposed design method allows to obtain high purity TEm,1 modes. The angular mode number can be chosen by replacing the plate with coupling apertures. Structure and parameters of the generator was optimized using CST-Microwave Studio. The mode generator was fabricated and checked on the test bench in an anechoic chamber. The measured field distributions confirm excitation of the desired TEm,1 modes. A good agreement between simulations and measurements is obtained. The presented mode generator, operating in non-rotating TEm,1 modes, is easy to fabricate, and suitable for cold-test experiments of high power components and devices.
Go to article

Authors and Affiliations

Grzegorz Jaworski
1
ORCID: ORCID
Andrzej Francik
1
ORCID: ORCID
Kacper Nowak
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The double barrier separate confinement heterostructure (DBSCH) design aimed at reduction of vertical beam divergence and increase of catastrophic optical damage (COD) level for high power laser diodes (LDs) operation is presented. Insertion of thin, wide-gap barrier layers at the interfaces between waveguide and cladding layers of SCH gives an additional degree of freedom in design making possible more precise shaping of the optical field distribution in the laser cavity. By comparison with the large optical cavity (LOC) heterostructure design it has been shown that the low beam divergence emission of DBSCH LDs can be attributed to the soft-profiled field distribution inside the cavity. This ‘soft mode profile’ seems to determine narrow laser beam emission rather than the field distribution width itself.

The potential problem with the soft-profiled but relatively narrow (at half-maximum) mode distribution is a lower COD level. Widening of the mode profile by the heterostructure design corrections can increase it, but care must be taken to avoid excessive decrease of confinement factor (Γ). As a result it is shown that DBSCH design is possible, where the low beam divergence and high COD level is achieved simultaneously.

Wide stripe gain-guided LDs based on GaAsP/AlGaAs DBSCH SQW structures have been manufactured according to the design above. Gaussian-shaped narrow directional characteristics are in relatively good agreement with modelling predictions. Vertical beam divergences are 13–15◦ and 17–18◦ FWHM for design versions experimentally investigated. Threshold current densities of the order of 350–270 Acm-2 and slope efficiencies of 0.95 and 1.15 W/A have been recorded for these two versions, respectively. Optical power at the level of 1 W has been achieved. The version with lower beam divergence proves to be more durable. Higher optical power levels are to be obtained after heterostructure doping optimisation.

Go to article

Authors and Affiliations

A. Maląg
Download PDF Download RIS Download Bibtex

Abstract

1) Background: the modeling, characterization, transformation and propagation of high-power CW laser beams in optical (including fiberoptic) trains and in the atmosphere have become hot topics in laser science and engineering in the past few years. Single-mode output is mandatory for high-power CW laser applications in the military field. Moreover, an unstationary, dynamic operation regime is typical. Recognized devices and procedures for laser-beam diagnostics could not be directly applied because of dynamic behavior and untypical non-Gaussian profiles. 2) Methods: the Wigner transform approach was proposed to characterize dynamically variable high-power CW laser beams with significant deterministic aberrations. Wavefront-sensing measurements by means of the Shack-Hartmann method and decomposition into an orthogonal Zernike basis were applied. 3) Results: deterministic aberration as a result of unstationary thermal-optic effects depending on the averaged power of the laser output was found. Beam quality determined via the Wigner approach was changed in the same way as the measurements of the beam diameter in the far field. 4) Conclusions: such an aberration component seems to be the main factor causing degradation in beam quality and in brightness of high-power CW laser beams.

Go to article

Authors and Affiliations

J. Jabczyński
P. Gontar
Ł. Gorajek
Download PDF Download RIS Download Bibtex

Abstract

High power fibre lasers need to be cooled efficiently to avoid their thermal damage. Temperature distribution in fibre should be estimated during the fibre laser design process. The steady-state heat equation in a cylindrical geometry is solved to derive a practical formula for temperature radial distribution in multi-layered optical fibres with arbitrary number of the layers. The heat source is located in one or more cylindrical domains. The validity of the analytical formula is tested by comparison with static heat transfer simulations of typical application examples including octagonal double clad fibre, air-clad fibre, fibre with nonuniform, microstructured core. The accuracy sufficient for practical use is reported even for cases with not exactly cylindrical domains.
Go to article

Bibliography

  1. Zervas, M. N. & Codemard, C. . High power fiber lasers: A review. IEEE J. Sel. Topics Quantum Electron. 20, 219–241 (2014). https://doi.org/10.1109/JSTQE.2014.2321279
  2. Davis, M. K., Digonnet, M. J. F. & Pantell, R. H. Thermal effects in doped fibers. J. Light. Technol. 16, 1013 (1998). https://doi.org/10.1109/50.681458
  3. Brown, D. C. & Hoffman, H. J. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers. IEEE J. Quantum Electron. 37, 207–217 (2001). https://doi.org/10.1109/3903070
  4. Limpert, J. et al. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation. Opt. Express 11, 2982–2990 (2003). https://doi.org/10.1364/OE.11.002982
  5. Wang, Y., Xu, Ch.-Q. & Po, H. Thermal effects in kilowatt fiber lasers. IEEE Photonics Technol. Lett. 16, 63–65 (2004). https://doi.org/10.1109/LPT.2003.818913
  6. Zintzen, B., Langer, T., Geiger, J., Hoffmann, D. & Loosen, P. Heat transport in solid and air-clad fibers for high-power fiber lasers. Opt. Express 15, 16787–16793 (2007). https://doi.org/10.1364/OE.15.016787
  7. Lapointe, M.-A., Chatigny, S., Piché, M., Cain-Skaff, M. & Maran, J.-N. Thermal effects in high-power CW fiber lasers. in Fiber Lasers VI: Technology, Systems, and Applications, Proc. SPIE 7195, 430–440 (2009). https://doi.org/10.1117/12.809021
  8. Liu, T., Yang, Z. M. & Xu, S. H. Analytical investigation on transient thermal effects in pulse end-pumped short-length fiber laser. Opt. Express 17, 12875–12890 (2009). https://doi.org/10.1364/OE.17.012875
  9. Sabaeian, M., Nadgaran, H., Sario, M. D., Mescia, L. & Prudenzano, F. Thermal effects on double clad octagonal Yb:glass fiber laser. Opt. Mater. 31, 1300–1305 (2009). https://doi.org/10.1016/j.optmat.2008.10.034
  10. Ashoori, V. & Malakzadeh, A. Explicit exact three-dimensional analytical temperature distribution in passively and actively cooled high-power fibre lasers. J. Phys. D. 44, 355103 (2011). https://doi.org/10.1088/0022-3727/44/35/355103
  11. Fan, Y. et al. Thermal effects in kilowatt all-fiber MOPA. Opt. Express 19, 15162–15172 (2011). https://doi.org/10.1364/OE.19.015162
  12. Fan, Y. et al. Efficient heat transfer in high-power fiber lasers. Chin. Opt. Lett. 10, 111401–111401 (2012). http://col.osa.org/abstract.cfm?URI=col-10-11-111401
  13. Huang, C. et al. A versatile model for temperature-dependent effects in Tm-doped silica fiber lasers. J. Light. Technol. 32, 421–428 (2014). https://doi.org/10.1109/JLT.2013.2283294
  14. Mohammed, Z., Saghafifar, H. & Soltanolkotabi, M. An approximate analytical model for temperature and power distribution in high-power Yb-doped double-clad fiber lasers. Laser Phys. 24, 115107 (2014). https://doi.org/10.1088/1054-660X/24/11/115107
  15. Yang, J., Wang, Y., Tang, Y. & Xu, J. Influences of pump transitions on thermal effects of multi-kilowatt thulium-doped fiber lasers. arXiv preprint arXiv:1503.07256 (2015). https://arxiv.org/abs/1503.07256
  16. Daniel, J. M. O., Simakov, N., Hemming, A., Clarkson, W. A. & Haub, J. Metal clad active fibres for power scaling and thermal management at kW power levels. Opt. Express 24, 18592–18606 (2016). https://doi.org/10.1364/OE.24.018592
  17. Karimi, M. Theoretical study of the thermal distribution in Yb-doped double-clad fiber laser by considering different heat sources. Prog. Electromagn. Res. C 88, 59–76 (2018). https://doi.org/10.2528/PIERC18081505
  18. Lv, Y., Zheng, H. & Liu, S. Analytical thermal resistance model for high power double-clad fiber on rectangular plate with convective cooling at upper and lower surfaces. Opt. Commun. 419, 141–149 (2018). https://doi.org/10.1016/j.optcom.2018.03.001
  19. Mafi, A. Temperature distribution inside a double-cladding optical fiber laser or amplifier. J. Opt. Soc. Am. B 37, 1821–1828 (2020). https://doi.org/10.1364/JOSAB.390935
  20. Peterka, P. et al. Thulium-doped silica-based optical fibers for cladding-pumped fiber amplifiers, Opt. Mater. 30, 174–176 (2007). https://doi.org/10.1016/j.optmat.2006.11.039
  21. Peterka, P., Faure, B., Blanc, W., Karásek, M. & Dussardier, B. Theoretical modelling of S-band thulium-doped silica fibre amplifiers. Opt. Quantum Electron. 36, 201–212 (2004). https://doi.org/10.1023/B:OQEL.0000015640.82309.7d
  22. Koška, P., Peterka, P. & Doya, V. Numerical modelling of pump absorption in coiled and twisted double-clad fibers. IEEE J. Sel. Topics Quantum Electron. 22, 55–62 (2016). https://doi.org/10.1109/JSTQE.2015.2490100
  23. Darwich, D. et al., 140 μm single-polarization passive fully aperiodic large-pitch fibers operating near 2 μm. Appl. Opt. 56, 9221–9224 (2017). https://doi.org/10.1364/AO.56.009221
  24. Franczyk, M., Stępień, R., Filipkowski, A., Pysz, D. & Buczyński, R. Nanostructured core active fiber based on ytterbium doped phosphate glass. IEEE J. Light. Technol. 37, 5885–5891 (2019). https://doi.org/10.1109/jlt.2019.2941664
  25. Michalska, M., Brojek, W., Rybak, Z., Sznelewski, P., Mamajek, M. & Świderski, J. Highly stable, efficient Tm-doped fiber laser—a potential scalpel for low invasive surgery. Laser Phys. Lett. 13, 115101 (2016). https://doi.org/10.1088/1612-2011/13/11/115101
  26. Todorov, F. et al. Active optical fibers and components for fiber lasers emitting in the 2-µm spectral range. Materials 13, 5177 (2020). https://doi.org/10.3390/ma13225177
  27. Engineering ToolBox. Air – thermal conductivity. (2009). https://www.engineeringtoolbox.com/air-properties-viscosity-conductivity-heat-capacity-d_1509.html
  28. Schreiber, T., Eberhardt, R., Limpert, J. & Tunnermann, A. High-power fiber lasers and amplifiers: fundamentals and enabling technologies to enter the upper limits. in Fiber lasers 7–61 (ed. Okhotnikov, O. G.) (Wiley-VCH, 2012). https://doi.org/10.1002/9783527648641.ch2
  29. Limpert, J. et al. High-power rod-type photonic crystal fiber laser, Opt. Express 13, 1055–1058 (2005). https://doi.org/10.1364/OPEX.13.001055
  30. Limpert, J. et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation. Light Sci. Appl. 1, e8 (2012). https://doi.org/10.1038/lsa.2012.8
Go to article

Authors and Affiliations

Martin Grábner
1
ORCID: ORCID
Pavel Peterka
1
ORCID: ORCID
Pavel Honzátko
1
ORCID: ORCID

  1. Department of Fiber Lasers and Nonlinear Optics, Institute of Photonics and Electronics, Czech Academy of Sciences, 1014/57 Chaberská St., 18251 Praha 8, Czech Republic

This page uses 'cookies'. Learn more