Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 35
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

As part of the work the high-pressure sorptomat - a novel apparatus for sorption tests under conditions of high gas pressure was developed. The sorption measurement is carried out using the volumetric method, and the precise gas flow pressure regulator is used in the device to ensure isobaric conditions and regulate the sorption pressure in the range of 0-10 MPa. The uniqueness and high precision of sorption measurements with the constructed apparatus are ensured by the parallel use of many pressure sensors with a wide measurement range as well as high precision of measurement - due to the use of precise pressure sensors. The obtained results showed, i.a. that the time of reaching the isobaric conditions of the measurement is about 6-7 seconds and it is so short that it can be considered a quasi-step initiation of sorption processes. Moreover, the results of the measurement pressure stabilization tests, during the CO 2 sorption test on activated carbon, have shown that the built-in pressure regulator works correctly and ensures isobaric sorption measurement conditions with the precision of pressure stabilization of ±1% of the measurement pressure. The maximum range of sorption measurement using the high-pressure sorptomat is 0-86400 cm 3/g, and the maximum measurement uncertainty is ±2% of the measured value. The activated carbon sample used for the tests was characterized by a high sorption capacity, reaching 104.4 cm 3/g at a CO 2 pressure of 1.0 MPa.
Go to article

Authors and Affiliations

Mateusz Kudasik
1
Łukasz Anioł
1
Norbert Skoczylas
1
ORCID: ORCID

  1. Strata Mechanics Research Institute of the Polish Academy of Sciences, ul. Reymonta 27, 30-059 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The high-pressure torsion (HPT) of Ti-Fe alloys with different iron content has been studied at 7 GPa, 5 anvil rotations and rotation speed of 1 rpm. The alloys have been annealed before HPT in such a way that they contained different amounts of α/α' and β phases. In turn, the β phase contained different concentration of iron. The 5 anvil rotations correspond to the HPT steady-state and to the dynamic equilibrium between formation and annihilation of microstructure defects. HPT leads to the transformation of initial α/α' and β-phases into mixture of α and high-pressure ω-phase. The α → ω and β → ω phase transformations are martensitic, and certain orientation relationships exist between α and ω as well as β and ω phases. However, the composition of ω-phase is the same in all samples after HPT and does not depend on the composition of β-phase (which is different in different initial samples). Therefore, the martensitic (diffusionless) transformations are combined with a certain HPT-driven mass-transfer. We observed also that the structure and properties of phases (namely, α-Ti and ω-Ti) in the Ti – 2.2 wt. % Fe and Ti – 4 wt. % Fe alloys after HPT are equifinal and do not depend on the structure and properties of initial α'-Ti and β-Ti before HPT.

Go to article

Authors and Affiliations

B. Straumal
A. Kilmametov
A. Gornakova
A. Mazilkin
B. Baretzky
A. Korneva
P. Zięba
Download PDF Download RIS Download Bibtex

Abstract

The article concerns investigations over benefits of application of HRC devices into sulphide copper ore processing plant. High pressure comminution appears to be very effective technology in hard ore processing circuits, especially in terms of energy consumption. This can be particularly observed in downstream grinding and beneficiation operations. A series of pilot-scale crushing tests in HRC roller press for various levels of operating pressure, were performed. HRC crushing effectiveness along with downstream grinding process course for each crushing product were also under analysis. The investigations were supplemented by analysis of flotation process effectiveness and impact of the process of high-pressure comminution on environment (dust emission). The results of investigation show that operating pressure level influences the obtained comminution results (comminution degree, yield of finest particle size fractions). The grinding effectiveness, measured through production of the finest particle size fractions was significantly influenced by the operating pressure. The results show that higher values of operating pressure (4.0 and 4.5 N/mm2) are not as efficient within this scope as the pressure 3.5 N/mm2. Dust emission is also correlated with the operating pressure value.
Go to article

Authors and Affiliations

Daniel Saramak
Tomasz Gawenda
Agnieszka Saramak
Dariusz Foszcz
Zdzisław Naziemiec
Download PDF Download RIS Download Bibtex

Abstract

Magnesium alloys are one of the lightest of all the structural materials. Because of their excellent physical and mechanical properties the

alloys have been used more and more often in various branches of industry. They are cast mainly (over 90%) on cold and hot chamber die

casting machines. One of the byproducts of casting processes is process scrap which amounts to about 40 to 60% of the total weight of a

casting. The process scrap incorporates all the elements of gating systems and fault castings. Proper management of the process scrap is

one of the necessities in term of economic and environmental aspects.

Most foundries use the process scrap, which involves adding it to a melting furnace, in a haphazard way, without any control of its content

in the melt. It can lead to many disadvantageous effects, e.g. the formation of a hard buildup at the bottom of the crucible, which in time

makes casting impossible due to the loss of the alloy rheological properties. The research was undertaken to determine the effect of an

addition of the process scrap on the mechanical properties of AZ91 and AM50 alloys. It has been ascertained that the addition of a specific

amount of process scrap to the melt increases the mechanical properties of the elements cast from AZ91 and AM50 alloys.

The increase in the mechanical properties is caused mainly by compounds which can work as nuclei of crystallization and are introduced

into the scrap from lubricants and anti-adhesive agents. Furthermore carbon, which was detected in the process scrap by means of SEM

examination, is a potent grain modifier in Mg alloys [1-3].

The optimal addition of the process scrap to the melt was determined based on the statistical analysis of the results of studies of the effect

of different process scrap additions on the mean grain size and mechanical properties of the cast parts.

Go to article

Authors and Affiliations

A. Fajkiel
P. Dudek
T. Reguła
Download PDF Download RIS Download Bibtex

Abstract

Experimental Mg-Al-RE type magnesium alloys for high-pressure die-casting are presented. Alloys based on the commercial AM50

magnesium alloy with 1, 3 and 5 mass % of rare earth elements were fabricated in a foundry and cast in cold chamber die-casting

machines. The obtained experimental casts have good quality surfaces and microstructure consisting of an α(Mg)-phase, Al11RE3,

Al10RE2Mn7 intermetallic compound and small amount of α+γ eutectic and Al2RE phases.

Go to article

Authors and Affiliations

K.N. Braszczyńska-Malik
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with experimental investigations of a set of metal "2-delta" gaskets of different depth. The gaskets were examined under assembly conditions, i.e. placed in their seats and loaded with the compressive assembly force with no operating pressure applied to the closure. The electric resistance wire strain gauges were used to measure the circumferential and axial strains at the inner cylindrical surface of the gaskets. The plastic deformations of the contact surface of the seats were measured after disassembly of the closures. The material tests were carried out to determine real mechanical properties of materials applied for the gaskets and the seats. The results of experiment were compared with the analytical approach. The plastic deformations were taken into account in the analytical solution of the contact region between the gasket and the seats. The results of experiment and analytical approach were verified by FEM calculations, which take into account linear hardening of the material, friction and contact effects.

Go to article

Authors and Affiliations

Maciej Krasiński
Andrzej Trojnacki
Download PDF Download RIS Download Bibtex

Abstract

This article concerns the issues of modeling and the optimizational approach for the performance of ore comminution circuits. A typical, multi-stage comminution circuit was analyzed with the high-pressure grinding rolls unit operating at a fine crushing stage. The final product of the circuit under investigation was, at the same time, a flotation feed in which particle size distribution initially determined the effectiveness of flotation operations. In order to determine the HPGR-based comminution circuit performance, a suitable mathematical model was built wherein the target function was linked directly with the effectiveness of the flotation processes. The target function in the presented model considers the issue in terms of the flotation operation’s effectiveness. The particle size distribution of individual comminution products and resulting from the weight recoveries of individual size fractions were criteria determining the quality of the comminution product. Weight recoveries of individual size fractions, in turn, were tied with the technical operating parameters of individual comminution devices. In the first model, profit maximization was the target function, while the second variant of the model took into account maximization of the useful mineral weight recovery in the concentrate. The HPGR application into ore processing circuits also results in energy saving benefits which were presented in a comparative analysis of the energy consumption of two comminution circuits – the first based on conventional crushing devices, and the second on the HPGR unit application which replaced the rod mills. The main benefit of such a modernization was almost two times lower energy consumption by the fine crushing stage and a decrease in the ball mills’ grinding operations load through bypassing a part of the material directly for the rough flotation operations.

Go to article

Authors and Affiliations

Daniel Saramak
Download PDF Download RIS Download Bibtex

Abstract

This paper describes comminution processes using the theories of limiting states, elasticity, and plasticity to explain some effects observed in the process of crushing brittle materials. It further describes the phenomena occurring during crushing in high-pressure roll presses and analyzes the effects of selected factors upon crushing results. The evaluation of the usefulness of various hypotheses for interpretation of the crushing process in the high-pressure grinding roll was carried out by means of experimental investigations. A series of laboratory crushing tests were also conducted in which limestone samples were pressed in a hydraulic piston-die press. Comminution conditions in this press are similar to those observed in the working chamber of HPGR presses. The limestone aggregate, placed in a steel cylinder, was exposed to pressure exerted by the stamp of the press. Samples had various particle size distributions, and experiments were conducted for two values of pressing force. Operating pressure was the main parameter influencing the obtained comminution effects, but the particle size distribution also has an impact on the process effects. A comparison of the results of the investigations indicated that there exists a significant potential for adjusting the operational parameters of high-pressure grinding rolls. Internal stresses are a derivate of crushing actions such as compression, impact, bending, and shearing. The result of crushing in a particular crusher depends on the strength properties of particles reacting to a specific type of crushing actions. In every crusher there are many crushing actions out of which one is dominating due to the crusher type. Impact is a dominating factor in impact or hummer crushers. Various actions of crusher elements on the crushed material are beneficiary. For example, the shape of the jaw surface in jaw crushers, cone surface in cone crushers, or roll surface in roll presses are important.

Go to article

Authors and Affiliations

Marian Brożek
Zdzisław Naziemiec
Download PDF Download RIS Download Bibtex

Abstract

Scientists are increasingly specializing in narrower fields, and communication is often difficult between physicists researching elementary particles and those studying semiconductors, not to mention between physicists and biologists or doctors. This makes interdisciplinary work difficult. And yet sometimes they succeed. One thread of work underway at the PAS Institute of High Pressure Physics offers a good example.

Go to article

Authors and Affiliations

Witold Trzeciakowski
Download PDF Download RIS Download Bibtex

Abstract

Final quality of casts produced in a die casting process represents a correlation of setting of technological parameters of die casting cycle, properties of alloy, construction of a die and structure of gating and of bleeding systems. Suitable structure of a gating system with an appertaining bleeding system of the die can significantly influence mechanical and structural properties of a cast. The submitted paper focuses on influence of position of outfall of an gate into the cast on its selected quality properties. Layout of the test casts in the die was designed to provide filling of a shaping cavity by the melt with diverse character of flowing. Setting of input technological parameters during experiment remained on a constant level. The only variable was the position of the gate. Homogeneity represented by porosity f and ultimate strength Rm were selected to be the assessed representative quality properties of the cast. The tests of the influence upon monitored parameters were realized in two stages. The test gating system was primarily subjected to numerical tests with the utilization of a simulation program NovaFlow&Solid. Consequently, the results were verified by the experimental tests carried out with the physical casts produced during operation. It was proved that diverse placement of the gate in relation to the cast influences the mode of the melt flowing through the shaping cavity which is reflected in the porosity of the casts. The experimental test proved correlation of porosity f of the cast with its ultimate strength Rm. At the end of the paper, the interaction dependencies between the gate position, the mode of filling the die cavity, porosity f and ultimate strength Rm.

Go to article

Authors and Affiliations

J. Majerník
ORCID: ORCID
Š. Gašpár
Download PDF Download RIS Download Bibtex

Abstract

The surface temperature of steel billets during hot rolling can reach up to 1200 °C. High temperature promotes rapid oxidation of the surface of steel billets, forming a dense oxide layer similar to fish scales. If not removed in a timely manner, it will damage the surface of the steel billets and exacerbate the wear of the rolls during the descaling process. There are many methods for descaling, but high-pressure water jet has become the main method for descaling due to its excellent descaling performance, low cost, and ease of use. The tip of the descaling nozzle serves as the main component, and its structural parameters affect the final descaling effect. This research changes the shape factor of the nozzle groove curve and the diameter of the nozzle throat, and performs computational fluid dynamics (CFD) simulations on the simplified nozzle external flow field. The axial velocity at the center of the jet generates a velocity peak at 0.5-1 Dc. The peak velocity increases with the increase of shape factor and throat diameter, and the influence of shape factor on the peak velocity is greater. For a constant target distance, the length of the velocity stable section along the jet impact line increases with the increase of the shape factor. The maximum value of dynamic pressure increases, and the smaller the target distance, the greater the dynamic pressure difference. The trend of water volume is roughly the same as that of dynamic pressure.
Go to article

Bibliography

[1] Ma, F., Li, Y. & Song, Z. M. (2011). Jet performance testing of high-pressure waterjet descaling nozzles. Advanced Materials Research. 314, 2408-2413. https://doi.org/10.4028/www.scientific.net/AMR.314-316.2408.
[2] Baofu Kou, Pengliang Huo, Xiaohua Hou, (2020). Research on the influence of external parameters of fan-type nozzle on water jet performance. Shock and Vibration. 2020, 4386259, 1-16. https://doi.org/10.1155/2020/4386259.
[3] Jiang, T., Huang, Z., Li, J., Zhou, Y. & Xiong, C. (2022). Effect of nozzle geometry on the flow dynamics and resistance inside and outside the cone-straight nozzle. ACS omega. 7(11), 9652-9665. https://doi.org/10.1021/acsomega.1c07050.
[4] Sushma, L., Deepik, A. U., Sunnam, S. K. & Madhavi, M. (2017). CFD investigation for different nozzle jets. Materials Today: Proceedings. 4(8), 9087-9094. https://doi.org/10.1016/j.matpr.2017.07.263.
[5] Gu, B., Hu, R., Wang, L., & Xu, G. (2022). Study on the influence rule of high-pressure water jet nozzle parameters on the effect of hydraulic slotting. Geofluids. 2022, 4510194. https://doi.org/10.1155/2022/4510194.
[6] Frick, J.W. (2009). Optimisation of technologies for hydro-mechanical descaling of steel. Metallurgical Research & Technology. 106(2), 60-68. https://doi.org/10.1051/ metal/2009015.
[7] Zhang, D., Wang, H., Liu, J., Wang, C., Ge, J., Zhu, Y., Chen, X. & Hu, B. (2022). Flow characteristics of oblique submerged impinging jet at various impinging heights. Journal of Marine Science and Engineering. 10(3), 399. https://doi.org/10.3390/jmse10030399.
[8] Song, X., Lyu, Z., Li, G. & Hu, X. (2017). Numerical analysis of the impact flow field of multi-orifice nozzle hydrothermal jet combined with cooling water. International Journal of Heat and Mass Transfer. 114, 578-589. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.106.
[9] Gongye, F., Zhou, J., Peng, J., Zhang, H., Peng, S., Li, S. & Deng, H. (2023). Study on the removal of oxide scale formed on 300 M steel special-shaped hot forging surfaces during heating at elevated temperature by a high-pressure water descaling process. Materials. 16, 1745, 1-14. https://doi.org/10.3390/ma16041745.
[10] Wen, J., Qi, Z., Behbahani, S. S., Pei, X. & Iseley, T. (2019). Research on the structures and hydraulic performances of the typical direct jet nozzles for water jet technology. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 41, 1-12. https://doi.org/10.1007/s40430-019-2075-2.
[11] Rouly, E., Warkentin, A. & Bauer, R. (2015). Design and testing of low-divergence elliptical-jet nozzles. Journal of Mechanical Science and Technology. 29, 1993-2003. https://doi.org/10.1007/s12206-015-0420-7.
[12] Huang, F., Mi, J., Li, D. & Wang, R. (2020). Impinging performance of high-pressure water jets emitting from different nozzle orifice shapes. Geofluids. 2020, 8831544. https://doi.org/10.1155/2020/8831544.
Go to article

Authors and Affiliations

Bowen Yang
1
Guangqiang Liu
2
Chengcheng Xu
3
Kun Liu
1
ORCID: ORCID
Peng Han
1

  1. School of Materials and Metallurgy, University of Science and Technology Liaoning, China
  2. School of Civil Engineering, University of Science and Technology Liaoning, China
  3. Cold Rolling Mill Plant, ANGANG Steel Company Limited, China
Download PDF Download RIS Download Bibtex

Abstract

The nonlinearity parameter B/A, internal pressure, and acoustic impedance are calculated for a room temperature ionic liquid, i.e. for 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide for temperatures from (288.15 to 318.15) K and pressures up to 100 MPa. The B/A calculations are made by means of a thermodynamic method. The decrease of B/A values with the increasing pressure is observed. At the same time B/A is temperature independent in the range studied. The results are compared with corresponding data for organic molecular liquids. The isotherms of internal pressure cross at pressure in the vicinity of 70 MPa, i.e. in this range the internal pressure is temperature independent.
Go to article

Authors and Affiliations

Edward Zorębski
Michał Zorębski
Marzena Dzida
Download PDF Download RIS Download Bibtex

Abstract

Development of salt cores prepared by high-pressure squeezing and shooting with inorganic binders has shown a high potential of the

given technology even for high-pressure casting of castings. Strength, surface quality of achieved castings, and solubility in water become

a decisive criterion. The shape and quality of grain surface particularly of NaCl – cooking salts that can be well applied without anticaking

additives has shown to be an important criterion. Thus the salt cores technology can cover increasingly growing demands for casting

complexity especially for the automobile industry.

Go to article

Authors and Affiliations

P. Jelínek
E. Adámková
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of investigations concerning the influence of negative (relative) pressure in the die cavity of high pressure

die casting machine on the porosity of castings made of AlSi9Cu3 alloy. Examinations were carried out for the VertaCast cold chamber

vertical pressure die casting machine equipped with a vacuum system. Experiments were performed for three values of the applied gauge

pressure: -0.3 bar, -0.5 bar, and -0.7 bar, at constant values of other technological parameters, selected during the formerly carried initial

experiments. Porosity of castings was assessed on the basis of microstructure observation and the density measurements performed by the

method of hydrostatic weighing. The performed investigation allowed to find out that – for the examined pressure range – the porosity of

castings decreases linearly with an increase in the absolute value of negative pressure applied to the die cavity. The negative pressure value

of -0.7 bar allows to produce castings exhibiting porosity value less than 1%. Large blowholes arisen probably by occlusion of gaseous

phase during the injection of metal into the die cavity, were found in castings produced at the negative pressure value of -0.3 bar. These

blowholes are placed mostly in regions of local thermal centres and often accompanied by the discontinuities in the form of interdendritic

shrinkage micro-porosity. It was concluded that the high quality AlSi9Cu3 alloy castings able to work in elevated temperatures can be

achieved for the absolute value of the negative pressure applied to the die cavity greater than 0.5 bar at the applied set of other parameters

of pressure die casting machine work.

Go to article

Authors and Affiliations

Z. Konopka
M. Łągiewka
A. Zyska
M. Nadolski
Download PDF Download RIS Download Bibtex

Abstract

The present work discusses results of increased temperature on shape-dimensional changes of a 110 type hose coupling, produced from EN AC-AlSi11 alloy with the use of pressure die casting technology. The castings were soaked for 3.5 h at temperatures 460°C, 475°C and 490°C. The verification of shape-dimensional accuracy of the elements after soaking treatment, in relation to raw casting, was carried out by comparing the 3D models received from 3D scanning. Soaking temperature of about 460°C-475°C results in no significant changes in the shapes and dimensions of the castings, or surface defects in the form of blisters, which can be seen at a temperature of 490°C.

Go to article

Authors and Affiliations

A. Jarco
Download PDF Download RIS Download Bibtex

Abstract

A mathematical model, created for description of the mechanism of interaction between basic parameters of high pressure dispersion of emulsions, is presented in this paper. The model is applied for the analysis of the influence of physical properties of emulsions, quantitative content of dispersed emulsion phase and parameters of emulsification, pressure and temperature, on the characteristic dimension of particles of the dispersed phase. The model makes it possible to determine appropriate process parameters, especially the pressure necessary to obtain the required dispersion of the emulsion and to define construction and exploitation parameters of high-pressure emulsification valve.

Go to article

Authors and Affiliations

Artur Popko
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with experimental investigations of a set of metal wave-ring gaskets of different thickness and different assembly interference. The gaskets were examined under assembly conditions, i.e. pressed in their seats with no operating pressure applied. The electric resistance wire strain gauges were used to measure the circumferential and axial strains at the inner surface of the gaskets. The traces of contact at the working surface of the gaskets were measured after disassembly the gaskets from their seats. The material tests were carried out to determine the real mechanical properties of materials applied for the gaskets and the seats. The results of experiment were verified by FEM calculations and compared with the analytical approach based on the simplified shell model proposed for the gasket.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Bogdan Szybiński
Andrzej Trojnacki

Download PDF Download RIS Download Bibtex

Abstract

The poorly cemented Ciężkowice poorly sorted sandstone and the compact Mucharz fine grain sandstone have been laboratory tested at the triaxial compressing conditions in thermo-pressurized chamber of a rigid press MTS-815. The confining pressure: P = σ₂ = gσ₃ range from 0 to 96 MPa and the temperature: T from 22°C to 120°C (simulated 500 m intervals from the surface to the depth of 3500 m). During (the) each test, the characteristics of deformation and the elastic wave velocity paths were simultaneously monitored. The volume density and longitudinal wave velocity showed a non-linear increase with the progress of simulated depth, a volume density growth by 1.6 to 4.0%, and the elastic wave velocity up to 250% of the primary value (surface condition), dependable on loading path, phase of deformation, and varying type of lithology. That may lead to wide error margin in a determination of rock’s engineering properties and also create discrepancies between the static parameters of rocks (Est, gνst) determined by standard laboratory load tests, and the dynamic parameters (Ed, νd) determined from the wave velocity and volume density.

Go to article

Authors and Affiliations

J. Pinińska
A. Dziedzic
Download PDF Download RIS Download Bibtex

Abstract

The results of a systematic study of the influence of meridional contours overlap in the stator-rotor axial interspace of the impulse and reactive type stages of a high-pressure steam turbine on the flow structure and gas-dynamic efficiency of the flow part are introduced. The studied flow parts of the impulse and reactive stages are typical for high-power high-pressure steam turbines. It is shown that the stages that have no overlaps and/or have a smooth shape of meridional contours have the best gasdynamic efficiency, and the most negative effect on the flow part is caused by the presence of caverns in the stator-rotor interspace. For cases where, due to technological limitations, it is impossible to avoid the presence of caverns and overlaps with a sharp (step-wise) change in the shape of the meridional contours, it is recommended to perform overlaps with positive size of overlap values near the rotor blades.
Go to article

Bibliography

[1] Zhu Y., Luo J., Liu F.: Influence of blade lean together with blade clocking on the overall aerodynamic performance of a multi-stage turbine. Aerosp. Sci. Technol. 80(2018), 329–336.
[2] Tulsidasa D., Shantharaja M.: Effect of taper and twisted blade in steam turbine. Int. J. Sci. Technol. Manage. 4(2015), 1, 319–325.
[3] Lampart P., Gardzilewicz A., Rusanov A., Yershov S.: The effect of stator blade compound lean and twist on flow characteristics of a turbine stage – numerical study based on 3D NS simulations. In: Proc. 2nd Symp. on Comp. Technologies for Fluid/Thermal/ Chemical Systems with Industrial Applications, ASME PVP Div. Conf., 1-5 Aug. 1999, Boston, 397(1999), 195–204.
[4] Benner M.W., Sjolander S.A., Moustapha S.H.: Influence of leading-edge geometry on profile losses in turbines at off-design incidence: Experimental results and an improved correlation. J. Turbomach. 119(1997), 193–200.
[5] Lee J.F.: Theory and Design of Steam and Gas Turbines. McGraw-Hill, London 1999.
[6] Oprea I., Negreanu G.: Research on the long blades of the steam turbine. In: Proc. Conf.: METIME 2005, 2005.
[7] Stodola A.: The Steam Turbine and the Future of Heat Engines. St. Petersburg 1904 (in Russian).
[8] Shcheglyaev A.V.: Steam turbines. Thermal Process Theory and Turbine Construction. Vol. 2, (6th Edn.). Energoatomizdat, Moscow 1993 (in Russian).
[9] Kazandzhan P.K., Tikhonov N.D.: Theory of Aircraft Engines. The Theory of Blade Machines: Part 1. Mechanical Engineering, Moscow 1995 (in Russian).
[10] Kostyuk A.G.: Some pressing problems of design and modernization of steam turbines. Therm. Power Eng. 4(2005), 16–27 (in Russian).
[11] Ainley D.G.; Mathieson C.R.: An Examination of the Flow and Pressure Losses in Blade Rows of Axial-Flow Turbines. Aeronaut. Res. Counc. Rep. Memo. Techn. Rep. 2891, London 1955.
[12] Osipov S.K.: Computational and experimental study of variants of the LP flow parts in order to increase their throughput. PhD thesis, National Research University Moscow Energy Institute, Moscow 2019.
[13] Baljé O.: Turbomachines – A Guide to Design, Selection and Theory. Wiley & Sons, New York 1981.
[14] Craig H.R.M., Cox H.J.A.: Performance estimation of axial flow turbines. P.I. Mech. Eng. 185(1970), 1, 407–424.
[15] Trukhny A.D.: Stationary Steam Turbines (2nd Ed.). Energoatomizdat, Moscow 1990 (in Russian).
[16] Diakunchak I.S., Gaul G.R., McQuiggan G., Southall L.R.: Siemens Westinghouse Advanced Turbine Systems Program Final Summary. American Society of Mechanical Engineers. GT–2002–30654, 2002.
[17] Scoretz M., Williams R.: Industrial Steam Turbine Value Packages. GE Energy, Atlanta 2008.
[18] Minchener A.: Developments in China’s coal-fired power sector. IEA Clean Coal Centre., London 2010,
[19] Rusanov A., Rusanov R., Lampart P.: Designing and updating the flow part of axial and radial-axial turbines through mathematical modelling. Open Eng. 5(2015), 399–410.
[20] Yershov S., Rusanov A., Gardzilewicz A., Lampart P.: Calculations of 3D viscous compressible turbomachinery flows. In: Proc. 2nd Symp. on Comp. Technologies for Fluid/Thermal/Chemical Systems with Industrial Applications. ASME PVP Division Conf., 1–5 August 1999, Boston, PVP, 397.2(1999), 143–154.
[21] Godunov S.K., Zabrodin A.V., Ivanov M.Ya. et al.: Numerical Solution of Multidimensional Problems of Gas Dynamics. Nauka, Moskow 1976 (in Russian).
[22] Rusanov A.V., Lampart P., Pashchenko N.V., Rusanov R.A.: Modelling 3D steam turbine flow using thermodynamic properties of steam IAPWS-95. Pol. Marit. Res. 23(2016), 1(89), 61–67.
[23] Lampart P., Rusanov A., Yershov S., Marcinkowski S., Gardzilewicz A.: Validation of 3D RANS Solver with a state equation of thermally perfect and calorically imperfect gas on a multi-stage low-pressure steam turbine flow. J. Fluid. Eng. – T ASME 127(2005), 83–93.
[24] Lampart P., Yershov S., Rusanov A., Szymaniak M.: Tip leakage/main flow interaction in multi-stage HP turbines with short-height blading. In: Proc. ASME Turbo Expo 2004 5 B, 1359–1367.
Go to article

Authors and Affiliations

Andrii Rusanov
1
Roman Rusanov
1

  1. The A. N. Pidgorny Institute of Mechanical Engineering Problems NAS of Ukraine, Dm. Pozharsky 2/10, 61046 Kharkiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations of defects in AME-series magnesium alloys produced by the high-pressure die-casting method are presented. The analyzed magnesium alloys contain about 5 wt% aluminum and 1-5 wt% rare earth elements introduced in the form of mischmetal. The casts were fabricated using a regular type cold-chamber high-pressure die-casting machine with a 3.2 MN locking force. The same surfaces of the casts were analyzed before and after the three-point bending test in order to determine the influence of the gas and shrinkage porosity on the deformation behavior of the alloys. The obtained results revealed that the most dangerous for the cast elements is the shrinkage porosity, especially stretched in the direction perpendicular to the that of the tensile stress action. Additionally, the influence of deformation twins arise in the dendrites of the primary α (Mg) solid solution and its interaction on the cracking process was described.
Go to article

Authors and Affiliations

Katarzyna Braszczyńska-Malik
ORCID: ORCID

Download PDF Download RIS Download Bibtex

Abstract

The high pressure die casting (HPDC) is a technique that allows us to produce parts for various sectors of industry. It has a great application in such sectors as automotive, energy, medicine, as the HPDC allows us to produce parts very fast and very cheaply. The HPDC casting quality depends on many parameters. The parameters among others, are cast alloy alloy metallurgy, filling system design, casting technology elements geometry and orientation, as well as, machine operation settings. In the article, different plunger motion schemes of the HPDC machine were taken into account. Analyses lead to learning about plunger motion influence on the casting porosity and solidification process run. Numerical experiments were run with the use of MAGMASoft® simulation software. Experiments were performed for industrial casting of water pump for automotive. Main parameter taken into account was maximal velocity of the plunger in the second phase. The analysis covered porosity distribution, feeding time through the gate, temperature field during whole process, solidification time. Cooling curves of the casting in chosen points were also analysed. Obtained results allow us to formulate conclusions that connect plunger motion scheme, gate solidification time and the casting wall thickness on the solidification rate and porosity of the casting.
Go to article

Authors and Affiliations

Katarzyna Żak
1
ORCID: ORCID
Rafał Dańko
1
ORCID: ORCID
Paweł L. Żak
1
ORCID: ORCID
Wojcich Kowalczyk
2

  1. AGH University of Krakow, Faculty of Foundry Engineering, al. Mickiewicza 30, 30-059 Kraków, Poland
  2. Frech Poland Sp. z o.o., Przedmos´c, Główna 8, 46-320 Praszka, Poland
Download PDF Download RIS Download Bibtex

Abstract

High-pressure die casting results in a high quality surface and good mechanical properties of castings. Under the effect of pressure, integral and solid castings are achieved without a large number of foundry defects. The correct and proper setting of technological parameters plays a very important role in minimizing casting defects. The aim of the presented article is to determine the optimum maximum piston velocity for a casting in the high-pressure casting process with two height variants, depending on their internal quality. It is because the internal quality of particular castings is important in terms of proper functionality in operations where the biggest problem is the porosity of the casting. The main cause of porosity formation is the decreasing solubility of gases (most often hydrogen) during the melt solidification. Solubility represents the maximum amount of gas that can dissolve in a metal under equilibrium conditions of temperature and pressure. Macroporosity and microporosity were determined from the sections of the surfaces in the determined zones of the castings. Here, the results was that the macroporosity decreased with increasing piston velocity. Ideal microstructure was evaluated at a piston velocity of 3 m/s for both types of castings. On the other hand, the increase in tube size has shown that velocities of 3 m/s and higher, the tube is more prone to macroporosity formation. The highest hardness was achieved at the piston velocity of 2 m/s at both tube lengths.
Go to article

Authors and Affiliations

M. Matejka
1
ORCID: ORCID
D. Bolibruchová
1
ORCID: ORCID
R. Podprocká
2

  1. University of Zilina, Faculty of Mechanical Engineering, Department of Technological Engineering, Slovak Republic
  2. Rosenberg-Slovakia s.r.o., Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

The results of the Charpy impact test of AE-type magnesium alloys produced by the high pressure die casting method are presented. Three alloys with different weight fractions of rare earth elements (RE; e.g. 1, 3 and 5 wt%) and the same mass fraction of aluminium (5 wt%) were prepared. The casts were fabricated using a typical cold chamber high pressure die casting machine with a 3.8 MN locking force. Microstructural analyses were performed by means of a scanning electron microscope (SEM). The impact strength (IS) was determined using a Charpy V hammer with an impact energy equal to 150 J. The microstructure of the experimental alloys consisted of an -Mg solid solution and Al11RE3, Al10Ce2Mn7 and Al2RE intermetallic compounds. The obtained results show the significant influence of the rare earth elements to aluminium ratio on the impact strength of the investigated materials. Lower the RE/Al ratio in the chemical composition of the alloy results in a higher impact strength of the material.

Go to article

Authors and Affiliations

Katarzyna Braszczyńska-Malik
ORCID: ORCID
M.A. Malik

This page uses 'cookies'. Learn more