Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Dramatic population and economic growth result in increasing demand for concrete infrastructure, which leads to an increment of freshwater demand and a reduction of freshwater resources. However, freshwater is a finite resource, which means that freshwater will be used up someday in the future when freshwater demand keeps increasing while freshwater resources are limited. Therefore, replacing freshwater with seawater in concrete blending seems potentially beneficial for maintaining the freshwater resources as well as advantageous alternatives to the construction work near the sea. There have been few experimental research on the effect of blending water salt content on the mechanical and physical characteristics of concrete, particularly high-strength concrete. Therefore, a research study on the influence of salt concentration of blending water on the physical and mechanical properties of high-strength concrete is necessary. This study covered the blending water salinity, which varied from 17.5 g/L to 52.5 g/L and was determined on the physical and mechanical properties, including workability, density, compressive strength, and flexural strength. The test results indicate that the use of sea salt in blending water had a slight negative influence on both the workability and the density of high strength concrete. It also indicates that the use of sea salt in blending water had a positive influence on both the compressive strength and the flexural strength of high-strength concrete in an earlystage.
Go to article

Authors and Affiliations

R.A. Razak
1 2
ORCID: ORCID
K. Yen Ng
2
ORCID: ORCID
M.M. Al Bakri Abdullah
1 3
ORCID: ORCID
Z. Yahya
1 2
ORCID: ORCID
R. Mohamed
1
ORCID: ORCID
K. Muthusamy
4
ORCID: ORCID
W.A.W. Jusoh
5
ORCID: ORCID
M. Nabiałek
6
ORCID: ORCID
B. Jeż
7
ORCID: ORCID

  1. Universiti Malaysia Perlis, Geopolymer and Green Technology, Center of Excellence (CEGeoGTech), Kangar, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, Perlis, Malaysia
  3. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology Perlis, Malaysia
  4. Malaysia Pahang, Faculty of Civil Engineering Technology, Universiti Pahang Malaysia
  5. Universiti Tun Hussein Onn, Faculty of Engineering Technology, Pagoh, Johor, Malaysia
  6. Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
  7. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 19c Armii Krajowej Av., 42-200 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Malaysia’s construction industry is experiencing rapid growth, translating into increased demand for cement. However, cement production pollutes the air to the detriment of the climate via CO2 emission, making research into a cementitious replacement in concrete a necessity. This paper details an experimental study of self-compacting concrete (SCC) with partial replacement of cement by rice straw ash (RSA), which is expected to result in environmental preservation due to the green materials being used in cement production. The physicomechanical properties of the SCC with RSA replacement were determined via its compressive strength, water absorption, self-workability, and fire resistance (residual strength after exposure to high temperatures). The proportion of RSA replacement used were 0%, 5%, 10%, 15%, 20%, and 25%, and all passed the slump flow test, except the 20% and 25% samples. The SCC samples with 15% of RSA replacement reported the highest compressive strength at 7 and 28 curing days and the highest residual strength post-exposure to high temperatures. The lowest percentage of water absorption was reported by the 15% of RSA replacement, with a density of 2370 kg/m3.
Go to article

Authors and Affiliations

Rafiza Abd Razak
1 2
ORCID: ORCID
Yi Qin Chin
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
3 2
ORCID: ORCID
Zarina Yahya
1
ORCID: ORCID
Mokhzani Khair Ishak
1
ORCID: ORCID
Sebastian Garus
4
ORCID: ORCID
Marcin Nabiałek
5
ORCID: ORCID
Warid Wazien Ahmad Zailani
6
ORCID: ORCID
Khairil Azman Masri
7
ORCID: ORCID
Andrei Victor Sandu
8
ORCID: ORCID
Agata Śliwa
9
ORCID: ORCID

  1. Universiti Malaysia Perlis, Faculty of Civil Engineering Technology, 02100 Padang Besar, Perlis, Malaysia
  2. Centre of Excellence Geopolymer and Green Technology (CEGeoGTech)
  3. Universiti Malaysia Perlis, Faculty of Chemical Engineering, 01000, Kangar, Perlis, Malaysia
  4. Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Czestochowa, Poland
  5. Department of Physics, Czestochowa University of Technology, Czestochowa, Poland
  6. UniversitiTeknologi MARA, School of Civil Engineering, College of Engineering, 40450 ShahAlam, Selangor, Malaysia
  7. 1 Department of Civil Engineering, College of Engineering, Universiti Malaysia Pahang, 26300 Gambang Kuantan Pahang, Malaysia
  8. Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, 71 D. Man-geron Blv., 700050 Iasi, Romania
  9. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian University of Technology, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more