Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Diagnostic methodologies are of fundamental importance for operational strategies of electrical devices, both in the power grid and in industrial applications. This paper reports about a novel approach based on partial discharge analysis applied to high voltage electrical insulation. Especially dynamics of charges deposited by partial discharges is explored applying a chopped sequence. The applications refer to microvoids occurring inside solid insulating systems or at the interfaces, such as delaminations at the electrodes. The experiments were carried out on embedded voids having distinctive wall dielectric materials. The underlying physical phenomena of post discharge charge transport are analyzed. The assessment is performed using phase-resolved partial discharge patterns acquired applying a chopped sequence. The chopped partial discharge (CPD) method provides quantitative insight into post discharge charge decay processes due to deposited and accumulated charges fluctuations. The assessment indicator is based on comparing partial discharge inception angle between chopped sequence and continuous run. The experiments have shown that materials with distinctive surface conductivity revealed adequately different charge decay time dynamics. The detailed analysis yields time constant of walls charge decay for insulating paper equal to 12 ms and cross-linked polyethylene 407 ms. The CPD method may be further used to investigate streamer physics inside bounded cavities in the form of voids. The presented method provides a quantitative approach for charge non-invasive decay assessment and offers high potential in future diagnostics applications.
Go to article

Bibliography

  1.  T. Tanaka and Y. Ikeda, “Internal discharges in polyethylene with an artificial cavity,” IEEE Trans. Power Apparatus Syst., vol. 90, no. 6, pp. 2692–2702, 1971.
  2.  B. Fruth and L. Niemeyer, “The importance of statistical characteristics of partial discharge data,” IEEE Trans. Electr. Insul., vol. 27, no. 1, pp. 60–69, 1992.
  3.  L. Niemeyer, “Generalized approach to partial discharge modelling,” IEEE Trans. Dielectr. Electr. Insul., vol. 2, no. 4, pp. 510–528, 1995.
  4.  H. Illias, G. Chen, and P.L. Lewin, “Partial discharge behavior within a spherical cavity in a solid dielectric material as a function of frequency and amplitude of the applied voltage,” IEEE Trans. Dielectr. Electr. Insul.. vol. 18, pp. 432–443, 2011, doi: 10.1109/TDEI.2011.5739447.
  5.  M.A. Saleh, S.S. Refaat, M. Olesz, H. Abu-rub, and J. Guźiński, “The effect of protrusions on the initiation of partial discharges in XLPE high voltage cables,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, 2021, doi: 10.24425/bpasts.2021.136037.
  6.  M. Florkowski, M. Kuniewski, and P. Zydroń, “Partial discharges in HVDC insulation with superimposed AC harmonics,” IEEE Trans. Dielectr. Electr. Insul., vol. 27, no. 6, pp. 1875‒1882, 2020.
  7.  G.C. Crichton, P.W. Karlsson, and A. Pedersen, “partial discharges in ellipsoidal and speroidal voids,” IEEE Trans. Electr. Insul., vol. 24, no. 2, pp. 335–342, 1989.
  8.  I.W. McAllister, “Decay of charge deposited on the wall of gaseous void,” IEEE Trans. Electr. Insul., vol. 27, no. 6, pp. 1202‒1207, 1992.
  9.  T. Tanaka and M. Uchiumi, “Two kinds of decay time constants for interfacial space charge in polyethylene-laminated dielectrics,” in Proc. Conf. on Electr. Insul. Dielectri. Phenom. (CEIDP), 1999, pp.  472‒475.
  10.  T. Mizutani, Y. Taniguchi, and M. Ishioka, “Charge decay and space charge in corona-charged LDPE,” in Proc. 11th International Symposium on Electrets, 2002, pp. 15–18.
  11.  B. Florkowska, “Partial discharge measurements with computer aided system in polyethyleneterephthalate and polypropylene films,” in Proc. High voltage engineering. 8th International Symposium, Yokohama, Japan, 1993, pp. 41–44.
  12.  H.J.M. Blennow, M.L.A. Sjoberg, M.A.S. Leijon, and S.M. Gubanski, “Effects of charge accumulation in a dielecric covered electrode system in air,” in Proc. IEEE Conf. Electr. Insul. Dielectr. Phenom. (CEIDP), 1999, pp. 484‒487.
  13.  K. Wu et al., “Contribution of surface conductivity to the current forms of partial discharges in voids,” IEEE Trans. Dielectr. Electr. Insul., vol. 12, no.  6, pp. 1116–1124, 2005.
  14.  L.A. Dissado et al., “Decay of space charge in a glassy epoxy resin following voltage removal,” IEEE Trans. Dielectr. Electr. Insul., vol. 13, no. 4, pp. 903–916, 2006.
  15.  Y. Serdyuk and S. Gubanski, “Computer modeling of interaction of gas discharge plasma with solid dielectric barriers,” IEEE Trans. Dielectr. Electr. Insul., vol. 12, pp. 725–735, 2005, doi: 10.1109/tdei.2005.1511098.
  16.  S. Kumara, Y.V. Serdyuk, and S.M. Gubanski, “Surface charge decay on polymeric materials under different neutralization modes in air,” IEEE Trans. Dielectr. Electr. Insul., vol. 18, no. 5, pp. 1779–1788, 2011.
  17.  K. Wu, C. Pan, Y. Meng, Y. Cheng, and M. Ding, “Dynamic behavior of surface charge distribution during partial discharge sequence,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 2, pp. 612–619, 2013.
  18.  M. Florkowski, B. Florkowska, P. Zydron, “Chopped Partial Discharge Sequence,” IEEE Trans. Dielectr. Electr. Insul., vol.  22, no. 6, pp. 3451‒3458, 2015.
  19.  H.A. Illias, M.A. Tunio, A.H.A. Bakar, H. Mokhlis, and G. Chen, “Partial discharge phenomena within an artificial void in cable insulation geometry: experimental validation and simulation,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 1, pp. 451–459, 2016.
  20.  J. Kindersberger and C. Lederle, “Surface charge decay on insulators in air and sulfurhexafluorid – Part I: simulation,” IEEE Trans. Dielectr. Electr. Insul., vol. 15, no. 4, pp. 941–948, 2008.
  21.  M. Florkowski, “Influence of insulating material properties on partial discharges at dc voltage,” Energies, vol. 13, p. 4305, 2020.
  22.  L. Xing, L. Weidong, X. Yuan, C. Weijiang, and B. Jiangang, “Surface charge accumulation and pre-flashover characteristics induced by metal particles on the insulator surfaces of 1100 kV GILs under AC voltage,” High Voltage, vol. 5, no. 2, pp. 134‒142, 2020.
  23.  M. Florkowski, Partial discharges in high-voltage insulating systems – mechanisms, processing, and analytics, AGH Press, Kraków, 2020.
  24.  Y. Luo et al., “Dynamics of surface charge and electric field distributions on basin-type insulator in GIS/GIL due to voltage polarity reversal,” High Voltage, vol. 5, no.  2, pp. 151‒159, 2020.
  25.  Q. Li et al., “Surface charge pattern analysis based on the field-dependent charging theory: a review,” IEEE Trans. Dielectr. Electr. Insul., vol. 27, no.  1, pp. 257‒269, 2020.
  26.  C. Pan et al., “Understanding partial discharge behavior from the memory effect induced by residual charges: A review,” IEEE Trans. Dielectr. Electr. Insul., vol. 27, no. 6, pp. 1936‒1950, 2020, doi: 10.1109/TDEI.2020.008960.
  27.  C. Pan et al., “The effect of surface charge decay on the variation of partial discharge location,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 4, pp. 2241–2249, 2016.
  28.  M. Florkowski, B. Florkowska, and R. Włodek, “Investigations on Post Partial Discharge Charge Decay in Void Using Chopped Sequence,” IEEE Trans. Dielectr. Electr. Insul., vol. 26, no. 6, pp. 3831‒3838, 2017.
  29.  M. Florkowski, B. Florkowska, M. Kuniewski, and P. Zydroń, “Mapping of discharge channels in void creating effective partial discharge area,” IEEE Trans. Dielectr. Electr. Insul., vol. 25, no. 6, pp. 2220–2228, 2018.
  30.  G. Callender, K.F. Goddard, and P.L. Lewin, “Simulating surface charge dynamics,” IEEE Trans. Dielectr. Electr. Insul., vol. 28, no. 1, pp. 19‒27, 2021.
  31.  H. He et al., “Simulation of positive streamer propagation in an air gap with a GFRP composite barrier,” High Voltage, pp. 1–13, 2021, doi: 10.1049/hve2.12112.
Go to article

Authors and Affiliations

Marek Florkowski
1
ORCID: ORCID

  1. AGH University of Science and Technology, Department of Electrical and Power Engineering, al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The life of Jerzy Ignacy Skowronski, Professor of High Voltages, Dean of the Faculty of Mechanical and Electrical Engineering and the first Dean of the Electrical Faculty of the Wrocław University of Science and Technology, member of the real Polish Academy of Sciences and President of the Wrocław Scientific Society, founder of the Wrocław Scientific School of Electrical Materials, was described. Documents contained in the Archives of the Wrocław University of Science and Technology, works published by Jerzy I. Skowronski, previously published publications on his scientific merits written by his former Ph.D. students and information from his grandson Jan Paweł Skowronski were used. The author's intention was to show unknown facts from the life of the Professor and his works unknown until now.
Go to article

Authors and Affiliations

Krystian Leonard Chrzan
1

  1. Politechnika Wrocławska
Download PDF Download RIS Download Bibtex

Abstract

High voltage DC insulation plays an important role, especially in power transmission systems (HVDC) but also increasingly on medium voltage levels (MVDC). The space charge behavior under DC voltage has great importance on electrical insulation reliability. This paper reports investigations of encapsulated space charge in homo-multilayer dielectric materials using the pulsed electro-acoustic (PEA) method. The charge has been introduced on the homo-layer interface by corona sprinkling prior to encapsulation. Two doses of charge density were accumulated on the dielectric surface in two types of dielectric materials Kapton and LDPE. The polarization DC voltage was applied in 2 min intervals in steps corresponding to an effective electric field strength in a range of 8-40 kV/mm for Kapton and 10-50 kV/mm for LDPE. The PEA-based detected space charge was compared at the initial, reference stage, prior to charge accumulation, and after corona sprinkling of defined charge density. The evaluation was based on the PEA time-dependent charge distributions and charge profiles referring to the DC polarization field strength. The goal of the experiment was to identify the relationship and the character of the known sprinkled and encapsulated charge inside homo-layered materials using the PEA method. According to the observations, the ratio between sprinkled charge densities is proportional to the encapsulated, charge densities measured by the PEA method on the interfacial homo-layer for the Kapton specimen. In the case of LDPE, a fast decrease of interfacial charge was observed, especially at a higher polarization field above 10 kV/mm. The encapsulation of the known charge amount can be extended to different types of multilayer material. The presented methodology might be used also for extended calibration of the PEA measurement system.
Go to article

Authors and Affiliations

Marek Florkowski
1
ORCID: ORCID
Maciej Kuniewski
1
ORCID: ORCID

  1. AGH University of Science and Technology, Department of Electrical and Power Engineering, al. Mickiewicza 30, 30-059 Kraków, Poland

This page uses 'cookies'. Learn more