Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A method to improve the quality of purifi ed water, reduce the cost of reagents for the regeneration of resin and create low-waste processes have been developed. This paper presents the results of ion exchange separation of sulfates and nitrates using AV-17-8 anion exchange resin in NO3 form. The effi ciency of anion separation on the highly basic anion exchange resin AV-17-8 depends on the magnitude and ratio of their concentrations in water. Separation on the AV-17-8 anion exchange resin has been shown to be eff ective at concentrations of sulfates up to 800 mg/dm3 and nitrates up to 100 mg/dm3. Conditions for regeneration of 10% NaNO3 anion exchange resin were determined. Reagent precipitation of sulfates from the used regeneration solution in the form of calcium sulfate was carried out. Calcium sulfate precipitate can be used in the manufacturing of building materials. The regeneration solution is suitable for reuse. The developed results will allow to introduce low-waste desalination technology of highly mineralized waters.
Go to article

Bibliography

  1. Berbar, Y., Amara, M. & Kerdjoudj, H. (2008). Anion exchange resin applied to a separation between nitrate and chloride ions in the presence of aqueous soluble polyelectrolyte, Desalination, 223, 238–242.
  2. Berger, E., Fro¨r, O. & Schäfer, R.B. (2019). Salinity impacts on river ecosystem processes: a critical mini-review, Phil. Trans. R. Soc. B, 374, 20180010. DOI:10.1098/rstb.2018.0010.
  3. Bodzek, M. (2019). Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Archives of Environmental Protection, 45 , 4, pp. 4–19. DOI:10.24425 / aep.2019.130237.
  4. Bodzek, M., Konieczny, K. & Rajca, M. (2019). Membranes in water and wastewater disinfection – review, Archives of Environmental Protection, 45, pp. 3–18. DOI:10.24425/aep.2019.126419.
  5. Boyacioglu, H. (2014). Spatial dıfferentiation of water quality between reservoirs under anthropogenic and natural factors based on statistical approach, Archives of Environmental Protection, 40/1, pp. 41–50. DOI:10.2478 / aep-2014-0002.
  6. Chen, Q.-B., Ren, H., Tian, Z., Sun, L. & Wang, J. (2019). Conversion and pre-concentration of SWRO reject brine into high solubility liquid salts (HSLS) by using electrodialysis metathesis, Separation and Purification Technology, 213, pp. 587-598. DOI:10.1016/j.seppur.2018.12.018.
  7. Dharminder, Ram Kumar Singh, Vishal Kumar, Anoop Kumar Devedee, Mruthyunjaya, M. & Reshu Bhardwaj (2019). The clean water: The basic need of human and agriculture, International Journal of Chemical Studies, 7, 2, pp. 1994-1998.
  8. Hilary A. Dugan, H.A., Bartlett, S.L., Burke, S.M., Doubek, J.P. & Krivak, F.E. (2017). Salting our freshwater lakes, Proc. Natl Acad. Sci. USA, 114, 17, pp. 4453-4458. DOI:10.1073/pnas.1620211114.
  9. Gomelya, M.D., Trus, I.M. & Shabliy, T.O. (2014). Application of aluminium coagulants for the removal of sulphate from mine water, Chemistry & Chemical Technology, 8, 2, pp. 197-203. http://science2016.lp.edu.ua/chcht/application-auminium-coagulants-removal-sulphate-mine-water.
  10. Griffith, M.B. (2017). Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: teleost fish, crustacea, aquatic insects, and Mollusca, Environ. Toxicol. Chem., 36, pp. 576-600. DOI:10.1002/etc.3676.
  11. Grodzka-Łukaszewska, M., Pawlak, Z. & Sinicyn, G. (2021). Spatial distribution of the water exchange through river cross-section – measurements and the numerical model, Archives of Environmental Protection, 47, 1, pp. 69–79. DOI:10.24425/aep.2021.136450.
  12. Halysh, V., Trus, I., Nikolaichuk, A., Skiba, M., Radovenchyk, I., Deykun, I., Vorobyova, V., Vasylenko, I. & Sirenko, L. (2020). Spent Biosorbents as Additives in Cement Production, Journal of Ecological Engineering, 21, 2, pp. 131–138. DOI:10.12911/22998993/116328.
  13. Hardikar, M., Marquez, I. & Achilli, A. (2020). Emerging investigator series: membrane distillation and high salinity: analysis and implications, Environmental Science: Water Research & Technology, 6, 6, pp. 1538-1552. DOI:10.1039/C9EW01055F.
  14. Kaushal, S.S. (2016). Increased salinization decreases safe drinking water, Environ. Sci. Technol., 50, pp. 2765-2766. DOI:10.1021/acs.est.6b00679.
  15. Lu, H., Wang, L., Wycisk, R., Pintauro, P.N. & Lin, S. (2020). Quantifying the kinetics-energetics performance tradeoff in bipolar membrane electrodialysis, Journal of Membrane Science, 612, 118279. DOI:10.1016/j.memsci.2020.118279.
  16. Luo, T., Abdu, S. & Wessling, M. (2018). Selectivity of ion exchange membranes: A review, Journal of Membrane Science, 555, pp. 429-454. DOI:10.1016/j.memsci.2018.03.051.
  17. Mester, T., Szabó, G., Bessenyei, É., Karancsi, G., Barkóczi, N. & Balla, D. (2017). The effects of uninsulated sewage tanks on groundwater. A case study in an eastern Hungarian settlement, J. Water Land Dev., 33, pp.123-129. DOI:10.1515/jwld-2017-0027.
  18. Mirzavand, M., Ghasemieh, H., Sadatinejad, S.J. & Bagheri, R. (2020). An overview on source, mechanism and investigation approaches in groundwater salinization studies, Int. J. Environ. Sci. Technol., 17, pp. 2463–2476. DOI:10.1007/s13762-020-02647-7.
  19. Mubita, T., Porada, S., Aerts, P. & van der Wal, A. (2020). Heterogeneous anion exchange membranes with nitrate selectivity and low electrical resistance, Journal of Membrane Science, 607, 118000.
  20. Panagopoulos, A. (2020). A comparative study on minimum and actual energy consumption for the treatment of desalination brine, Energy, 212, 118733. DOI:10.1016/j.energy.2020.118733.
  21. Radovenchyk, I., Trus, I., Halysh, V., Krysenko, T.,Chuprinov, E. & Ivanchenko, A. (2021). Evaluation of Optimal Conditions for the Application of Capillary Materials for the Purpose of Water Deironing, Ecol. Eng. Environ. Technol., 2, pp. 1–7. DOI:10.12912/27197050/133256.
  22. Rajca, M. (2012). The impact of selected factors on the removal of anionic water pollutants in ion-exchange process of MIEX®DOC, Archives of Environmental Protection, 38, pp. 115–121. DOI:10.2478/v10265-012-0010-z.
  23. Schuler, M.S., Cañedo-Argüelles, M., Hintz, W.D., Dyack, B., Birk, S. & Relyea, R.A. (2018). Regulations are needed to protect freshwater ecosystems from salinization, Philos Trans R Soc Lond B Biol Sci, 374, 1764, 20180019. DOI:10.1098/rstb.2018.0019.
  24. Trokhymenko, G., Magas, N., Gomelya, N., Trus, I. & Koliehova, A. (2020). Study of the Process of Electro Evolution of Copper Ions from Waste Regeneration Solutions, Journal of Ecological Engineering, 21, 2, pp. 29–38. DOI:10.12911/22998993/116351
  25. Trus, I. & Gomelya, M. (2021). Effectiveness nanofiltration during water purification from heavy metal ions, Journal of Chemical Technology and Metallurgy, 56, 3, pp. 615–620, https://dl.uctm.edu/journal/node/j2021-3/21_20-03p615-620.pdf.
  26. Trus, I., Radovenchyk, I., Halysh, V., Skiba, M., Vasylenko, I., Vorobyova, V., Hlushko, O. & Sirenko, L. (2019). Innovative Approach in Creation of Integrated Technology of Desalination of Mineralized Water, Journal of Ecological Engineering, 20, 8, pp. 107–113. DOI:10.12911/22998993/110767.
  27. Trus, I.M., Gomelya, M.D., Makarenko, I.M., Khomenlo, A.S. & Trokhymenko, G.G. (2020). The Study of the particular aspects of water purification from heavy metal ions using the method of nanofiltration, Naukovyi Visnyk Natsionalnogo Hirnychogo Universytety, 4, pp.117–123. DOI:10.33271/nvngu/2020-4/117
  28. Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, Sullivan, C.A.,LiermannC.R. & Davies, P.M.. (2010). Global threats to human water security and river biodiversity, Nature, 467, pp. 555-561. DOI:10.1038/nature09440.
  29. Wiśniowska, E. & Włodarczyk-Makuła, M. (2020). Removal of nitrates and organic compounds from aqueous solutions by zero valent (ZVI) iron reduction coupled with coagulation/precipitation process, Archives of Environmental Protection, 46, 3, pp. 22–29. DOI:10.24425 / aep.2020.134532.
Go to article

Authors and Affiliations

Inna Trus
1
ORCID: ORCID
Mukola Gomelya
1
ORCID: ORCID
Viktoria Vorobyova
1
ORCID: ORCID
Margarita Skіba
2
ORCID: ORCID

  1. National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
  2. Ukrainian State Chemical-Engineering University, Dnipro, Ukraine

This page uses 'cookies'. Learn more