Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 18
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The expected demand for hard coal intended for the households will progressively be decreasing. This is directly related to the introduced anti-smog resolutions, as well as the growing level of environmental awareness. However, it should be noted, that the use of the modern home heating boilers will result in an increase in the demand for medium coal sizes. The shortfall of this type of coal is already observed on the market. Therefore, its import is necessary. One of the solutions to increase the supply of the medium coal sizes is the production of coal briquettes. Moreover, their use will consequently lead to reduced emissions.

The paper presents a comparison of emissions from the combustion of coal briquettes and hard coal in home heating boilers. The briquettes were characterized by significantly lower emissions than hard coal (by 52% on average). The particulate matter emissions were lower by 70%. This may significantly contribute to improving air quality in Poland and in addition, limit the occurrence of smog. The possibility of further emission reduction by using low-emission fuels as briquette components was presented. The average relative emission reduction compared to hard coal for the analyzed fuels was estimated as follows: 62% for coal char, 57% for coke, 51% for charcoal/biocarbon, 49% for anthracite, 45% for torrefied biomass, and 33% for peat.

Furthermore, the issue of the mercury content in the analyzed fuels was discussed. The lowest mercury content was found in biomass fuels, in particular biomass after thermal treatment (torrefied biomass, biocarbon, and charcoal). Fuels produced from hard coal in the pyrolysis process (coal char and coke) were characterized by very low mercury content as well.

Go to article

Authors and Affiliations

Tadeusz Dziok
Krystian Penkała
Download PDF Download RIS Download Bibtex

Abstract

Coal combustion processes are the main source of mercury emission to the environment in Poland. Mercury is emitted by both power and heating plants using hard and brown coals as well as in households. With an annual mercury emission in Poland at the level of 10 Mg, the households emit 0.6 Mg. In the paper, studies on the mercury release in the coal and biomass combustion process in household boilers were conducted. The mercury release factors were determined for that purpose. For the analyzed samples the mercury release factors ranged from 98.3 to 99.1% for hard coal and from 99.5% to 99.9% for biomass, respectively. Due to the high values of the determined factors, the amount of mercury released into the environment mainly depends on the mercury content in the combusted fuel. In light of the obtained results, the mercury content in the examined hard coals was 6 times higher than in the biomass (dry basis). Taking the calorific value of fuels into account, the difference in mercury content between coal and biomass decreased, but its content in coal was still 4 times higher. The mercury content determined in that way ranged from 0.7 to 1.7 μg/MJ for hard coal and from 0.1 to 0.5 μg/MJ for biomass, respectively. The main opportunity to decrease the mercury emissions from households is offered by the use of fuels with a mercury content that is as low as possible, as well as by a reduction of fuel consumption. The latter could be obtained by the use of modern boilers as well as by the thermo-modernization of buildings. It is also possible to partially reduce mercury emissions by using dust removal devices.

Go to article

Authors and Affiliations

Tadeusz Dziok
Elżbieta Kołodziejska
Ewa Kołodziejska
Agnieszka Woszczyna
Download PDF Download RIS Download Bibtex

Abstract

As recent studies showed, the post-communist countries have relatively the highest level of energy poverty in Europe. The poorest of them still are not explored. So, the authors decided to study this problem for Ukraine as one of the largest and poorest post-communist countries in Europe. This Eastern European country experienced a number of challenges before the pandemic, including a war with Russia in the east of the country, high external debt, high energy intensity and low added value of the economy. The purpose of this study is to measure how deep the energy poverty problem in Ukraine is and how it changed during the COVID-19 pandemic. Applying selected quantitative and financial indicators, the authors showed the problem of energy poverty in Ukraine remained acute at the beginning of 2020, especially in terms of heating. Moreover, its level in Ukraine was three times higher than the average level for the all the EU countries. Furthermore, in 2020, during the pandemic, there were drastic increasing arrears of households on utility bills that meant a new leap of energy poverty in Ukraine. This study did not search for the causes of the identified leap in energy poverty, which apparently connected with the global and local economic and social consequences of the pandemic. However, it revealed the depth of this problem and the lower impact of the nature factor (air temperature) on energy poverty during and after the COVID-19 pandemic. Further research is required to identify the underlying drivers and develop possible solutions to this problem in Ukraine and other European countries suffering from high energy poverty.
Go to article

Authors and Affiliations

Anatoliy G. Goncharuk
1
ORCID: ORCID
Kostiantyn Hromovenko
2
ORCID: ORCID
Alborz Pahlevanzade
2
ORCID: ORCID
Yurii Hrinchenko
3
ORCID: ORCID

  1. Department of Management, International Humanitarian University, Ukraine
  2. Department of International Law and Comparative Law, International Humanitarian University, Ukraine
  3. Department of Marketing and Business Administration, Odessa I.I. Mechnikov National University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The coronavirus disease 2019 (COVID-19) pandemic has wreaked havoc especially in 2020 and the first half of 2021 and has left severe after-effects affecting not only the health sector but also all aspects of human life. The aim of this study is to inspect the current trends of the quantities of household waste produced during the first four waves of the pandemic. The study was carried out in Guelma city, northeastern of Algeria, where the first containment was registered on February 25, 2020, it concerns an Italian national (Mohamed et al. 2021). An increase in the production of household waste of approximately 14% during the first containment was recorded in the study area, with the interruption of recycling, which caused an enormous pressure on the technical landfill center of Guelma. The results showed that the trend of waste production decreased at the following averages: 205.80; 198.92; 196.69 and 192.43 tons, for the first four waves of COVID-19 respectively. Therefore, a return to the pre-pandemic state would be close, which dampens the impact and pressure on the landfill and the environment. This research allows for perceiving the waste management status in Algeria, between the pandemic and post-pandemic period.
Go to article

Bibliography

  1. Acter, T., Uddin, N., Das, J., Akhter, A., Choudhury, T.R. & Kim, S. (2020). Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Science of The Total Environment, 730, 138996. DOI:10.1016/j. scitotenv.2020.138996
  2. Adyel, T.M. (2020). Accumulation of plastic waste during COVID-19. Science, 369(6509), pp. 1314–1315. DOI:10.1126/science. abd9925
  3. AND (2020). Report on the State of Waste Management in Algeria https://and.dz/site/wp-content/uploads/rapport%20DMA2.pdf (Assessed 03 july 2022).
  4. Anderson, R.M., Heesterbeek, H., Klinkenberg, D. & Hollingsworth, T.D. (2020). How will country-based mitigation measures influence the course of the COVID-19 epidemic? The Lancet, 395(10228), pp. 931–934. DOI:10.1016/S0140-6736(20)30567-5
  5. Andi (2020). National Agency for the Development of Investments (Andi). The borough of Guelma. Volumes 1–19. Presentation of the wilaya (borough) 2015. Assessed on Sep 09, 2020. http:// www.andi.dz/PDF/monographies/Guelma.pdf. Journal of Environmental Engineering.
  6. Aouissi, H.A., Kechebar, M.S.A., Ababsa, M., Roufayel, R., Neji, B., Petrisor, A.-I. Ohmagari, N. (2022). The Importance of Behavioral and Native Factors on COVID-19 Infection and Severity: Insights from a Preliminary Cross-Sectional Study. Healthcare, 10(7), 1341. DOI:10.3390/healthcare10071341
  7. Boroujeni, M., Saberian, M. & Li, J. (2021). Environmental impacts of COVID-19 on Victoria, Australia, witnessed two waves of Coronavirus. Environmental Science and Pollution Research, 28(11), pp. 14182–14191. DOI:10.1007/s11356-021-12556-y
  8. Chen, D.M.-C., Bodirsky, B.L., Krueger, T., Mishra, A. & Popp, A. (2020). The world’s growing municipal solid waste: trends and impacts. Environmental Research Letters, 15(7), 074021. DOI:10.1088/1748-9326/ab8659
  9. Chen, Q., Liang, M., Li, Y., Guo, J., Fei, D., Wang, L.& Li, X. (2020). Mental health care for medical staff in China during the COVID-19 outbreak. The Lancet Psychiatry, 7(4), e15-e16. DOI:10.1016/ S2215-0366(20)30078-X
  10. Chen, W., Zhang, N., Wei, J., Yen, H.-L. & Li, Y. (2020). Short- -range airborne route dominates exposure of respiratory infection during close contact. Building and Environment, 176, 106859. DOI:10.1101/2020.03.16.20037291
  11. Contributors, V. (2021). Economic Crisis and Mentality of Youth in Post-Pandemic Period edited by Sagar Simlandy: PS Opus Publications.
  12. DGPPS, M. (2020). Plan de préparation et de riposte à la menace de l’infection coronavirus Covid-19. Disponible sur: http://www. sante. gov. dz/images/Prevention/cornavirus/Plan-de-prparation. PDF.
  13. Ebner, N. & Iacovidou, E. (2021). The challenges of Covid-19 pandemic on improving plastic waste recycling rates. Sustainable Production and Consumption, 28, pp. 726–735. DOI:10.1016/j. spc.2021.07.001
  14. Ghennam, N. (2020). Waste Recycling Business in Algeria – Opportunities and Challenges for SME. Al-Riyada Bus. Econ. J., 6, pp. 10–22.
  15. Hyun, M. (2020). Korea sees steep rise in online shopping during COVID-19 pandemic. ZD Net. Assessed on April 12, 2020. https://www.zdnet.com/article/justice-department-seizes-fakecovid- 19-vaccine-website-stealing-info-from-visitors/
  16. Iyer, M., Tiwari, S., Renu, K., Pasha, M. Y., Pandit, S., Singh, B. & Balasubramanian, V. (2021). Environmental survival of SARSCoV- 2 – a solid waste perspective. Environmental Research, 197, 111015. DOI:10.1016/j.envres.2021.111015
  17. Jribi, S., Ben Ismail, H., Doggui, D. & Debbabi, H. (2020). COVID-19 virus outbreak lockdown: What impacts on household food wastage? Environment, Development and Sustainability, 22(5). DOI:10668-020-00740-y
  18. Kampf, G., Todt, D., Pfaender, S. & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection, 104(3), pp. 246–251. DOI:10.1016/j.jhin.2020.01.022
  19. Kandel, N., Chungong, S., Omaar, A. & Xing, J. (2020). Health security capacities in the context of COVID-19 outbreak: an analysis of International Health Regulations annual report data from 182 countries. The Lancet, 395(10229), pp. 1047–1053. DOI:10.1016/S0140-6736(20)30553-5
  20. Kebaili, F. K., Baziz-Berkani, A., Aouissi, H.A., Mihai, F.-C., Houda, M., Ababsa, M. & Fürst, C. (2022). Characterization and Planning of Household Waste Management: A Case Study from the MENA Region. Sustainability, 14(9), 5461. DOI:10.3390/su14095461
  21. Klemeš, J.J., Van Fan, Y., Tan, R.R. & Jiang, P. (2020). Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renewable and Sustainable Energy Reviews, 127, 109883. DOI:10.1016/j.rser.2020.109883
  22. Leveau, C.M., Aouissi, H.A. & Kebaili, F.K. (2022). Spatial diffusion of COVID-19 in Algeria during the third wave. GeoJournal, 1–6. DOI:10.1007/s10708-022-10608-5
  23. Lounis, M., Rais, M.A., Bencherit, D., Aouissi, H.A., Oudjedi, A., Klugarová, J. & Riad, A. (2022). Side Effects of COVID-19 Inactivated Virus vs. Adenoviral Vector Vaccines: Experience of Algerian Healthcare Workers. Frontiers in Public Health, 10, 896343-896343. DOI:10.3389/fpubh.2022.896343
  24. Low, D., & Koh, A. (2020). Singapore’s Food Delivery Surge during Lockdown Highlights Waste Problems. Bloomberg News, (Accessed 18 July2020).
  25. Mohamed, K., Amina, M.-S., Mouaz, M.B.E., Zihad, B. & Wafa, R. (2021). The impact of the coronavirus pandemic on the household waste flow during the containment period. Environmental Analysis Health and Toxicology, 36(2), e2021011. DOI:10.5620/ eaht.2021011
  26. Mol, M.P.G. & Caldas, S. (2020). Can the human coronavirus epidemic also spread through solid waste? Waste Management & Research, 38(5), pp. 485–486. DOI:10.1177/0734242X20918312
  27. Nzediegwu, C. & Chang, S. (2020). Developing Countries For Submission to: Resources Conservation y Recycling Type of Paper: Perspective. Resources, Conservation. Recycling, 104947.
  28. Paleologos, E.K., Elhakeem, M. & Amrousi, M.E. (2018). Bayesian analysis of air emission violations from waste incineration and coincineration plants. Risk Analysis, 38(11), pp. 2368–2378. DOI:10.1111/risa.13130
  29. Ranney, M.L., Griffeth, V. & Jha, A.K. (2020). Critical supply shortages – the need for ventilators and personal protective equipment during the Covid-19 pandemic. New England Journal of Medicine, 382(18), e41. DOI:10.1056/NEJMp2006141
  30. Remuzzi, A. & Remuzzi, G. (2020). COVID-19 and Italy: what next? The Lancet, 395(10231), pp. 1225–1228. DOI:10.1016/S0140- 6736(20)30627-9
  31. Roy, P., Mohanty, A.K., Wagner, A., Sharif, S., Khalil, H., & Misra, M. (2021). Impacts of COVID-19 outbreak on the municipal solid waste management: Now and beyond the pandemic. ACS Environmental Au, 1(1), pp. 32–45. DOI:10.1021/ acsenvironau.1c00005
  32. SNGID. (2019). National Waste Management Strategy https://www. nascrc.com/wp-content/uploads/2019/11/la-strat%C3%A9gienationale- pour-la-gestion- int%C3%A9gr%C3%A9e-desd% C3%A9chets-SNGID-2035-cas-des-POPs.pdf (accessed on 15 June 202)
  33. Van Fan, Y., Jiang, P., Hemzal, M. & Klemeš, J.J. (2021). An update of COVID-19 influence on waste management. Science of the Total Environment, 754, 142014. DOI:10.1016/j. scitotenv.2020.142014
  34. Vaverková, M.D., Paleologos, E.K., Dominijanni, A., Koda, E., Tang, C.S., Wdowska, M., Li, Q., Guarena, N., Abdel- Mohsen, O.M., Vieira, C.S., Manassero, M., O’Kelly, B.C., Xie, Q., Bo, MV., Adamcová, D.,. Podlasek, A., Anand, U.M., Arif, M., Venkata Siva Naga Sai Goli, Kuntikana, G., Palmeira, E.M., Pathak, S. & Singh, D.N. (2020). Municipal solid waste management under COVID-19: challenges and recommendations. Environmental Geotechnics, 8(3), pp. 217–232. DOI:10.1680/jenge.20.00082
  35. WHO (2020). COVID-19 2020 situation summary – updated 19 April 2020. Available at. https://www.cdc.gov/coronavirus/2019-ncov/ cases-updates/summary. html#covid19-pandemic (Accessed 20 june 2021 ).
  36. WHO (2022). The COVID-19 weekly epidemiological Update – updated 12 October 2022. Available. https://www.who.int/ publications/m/item/weekly-epidemiological-update-on-covid- 19-12-october-2022 (Accessed 18 /10/ 2022).
  37. World Health Organization. Worldmeter (2015). Worldmeter 2015. Available online: https:// www.worldometers.info/population/largest-cities-in-the-world/ (accessed on 12 March 2022).
  38. Yang, Y., Li, W., Zhang, Q., Zhang, L., Cheung, T. & Xiang, Y.-T. (2020). Mental health services for older adults in China during the COVID-19 outbreak. The Lancet Psychiatry, 7(4), e19. DOI:10.1016/S2215-0366 (20)30079-1
  39. Zandifar, A. & Badrfam, R. (2020). Iranian mental health during the COVID-19 epidemic. Asian Journal of Psychiatry, 51. DOI:10.1016/j.ajp.2020.101
Go to article

Authors and Affiliations

Amina Mesbahi-Salhi
1
Mohamed Kaizouri
1
Bachir El Mouaz Madoui
1
Wafa Rezaiguia
2
ORCID: ORCID
Zihad Bouslama
1
ORCID: ORCID

  1. Laboratory of Ecology of Earth and Aquatic Systems, University of Badji Mokhtar,Annaba, 23052, Algeria
  2. University of Mohamed Cherif Messaadia, Souk-Ahras, 41043, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of hard coal prices offered at the coal depots in Poland. Coal depots are one of the most popular forms of purchasing coal by Polish households. Prices refer to price offers for cobble coal (grain size: 60–120 mm) and their analysis is performed based on the regions rather than on all Polish provinces. From January 2010 to May 2019, there were two regions that were distinguished in terms of price spread: the S-W region and the N-E region. In the case of the S-W region, the difference between the province with the minimum price (Śląskie Province) and with the maximum price (Dolnośląskie Province since September 2017) ranged from PLN 53–83/ton, and in the N-E region the difference ranged PLN 64–130/ton. In the case of the remaining two regions, prices varied from a few to approximately PLN 80/ton for the N-W region, and from a few to about PLN 40 /ton for the S-E region. In order to determine how the origin of the coal affects its prices (domestic coal, imported coal), the analysis also included cobble coal price offers that are part of the Author’s own database created for several years. In the case of cobble coal from domestic producers, price offers varied betwwen PLN 14–33/GJ, and price offers for imported cobble coal stood varied between PLN 12–32/GJ. The N-E region attracted particular attention as the price offers for imported cobble coal reached a level similar to the offers from the S-W region, i.e. the region closest to Silesian coal mines. Price differentials within provinces belonging to a given region were influenced by the geographical rent. The paper also analyses average selling prices offered by domestic producers for various size grades of steam coal as well as selling prices for imported coal (free-at-frontier price).

Go to article

Authors and Affiliations

Katarzyna Stala-Szlugaj
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The smart household connected to the energy dispatch arises to overcome the environmental crisis, encourages the penetration of renewable energies and promotes consumer respond to intraday market prices. Aquaponic production results from the combination of fish farming and hydroponics (cultivating plants using fish waste as nutrients). The prototype was built based on the rule of the 3 Rs: reduce, reuse and recycle. The crop reduces the consumption of water and energy, reuses water in a recirculation process, which is filtered by: 1) gravity, 2) biofilters and 3) porosity. Recycling is expanded to plastic containers and food containers of polystyrene. The aquaponic production system is decorative, completely organic (without chemicals), promotes the growth of green areas for comfortable homes and allows the consumption of healthy food, as well as energy planning to save energy. The system is done with a digital level control connected to a water pump and an oxygen pump. A novel method allows the aggregator to optimize the recirculation programming of the aquaponic system for periods of 24 hours. The method maximizes the economic benefits with the help of an energy balance between hours.

Go to article

Authors and Affiliations

Julian Garcia-Guarino
Mayerly Duran-Pinzóno
Jorge Paez-Arango
Sergio Rivera
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to determine the impact of the temperature of wastewater in a biological reactor with activated sludge and the BOD5/N-NH4 ratio in the influent to the treatment plant on nitrification efficiency and the concentration of ammonium nitrogen in treated wastewater. Tests were carried out in a household wastewater treatment plant which collects and treats sewage from a school building and a teacher’s house. During the 3-year study, large fluctuations in the sewage temperature in bioreactor were noted which was closely related to the ambient temperature. There were also large fluctuations in the concentration of organic matter and the concentration of ammonium nitrogen in inflowing sewage. The influence of wastewater temperature in the bioreactor and the BOD5/N-NH4 ratio on the concentration of ammonium nitrogen in treated wastewater was determined using Pearson’s linear correlation. A statistical analysis showed that a 1°C decrease in the temperature of wastewater in the bioreactor increased the concentration of ammonium nitrogen in treated wastewater by 2.64 mgN-NH4·L-1. Moreover, it was found that nitrification depended on the ratio of BOD5 to the concentration of ammonium nitrogen in wastewater flowing into the bioreactor. An increase in the BOD5/N-NH4 ratio by 1 value led to a 5.41 mgN-NH4·L-1 decrease in the concentration of ammonium nitrogen.

Go to article

Authors and Affiliations

Piotr Bugajski
Karolina Kurek
Krzysztof Jóźwiakowski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the use of multi-criteria analysis as a tool that helps choosing an adequate technology for a household wastewater treatment plant. In the process of selection the criteria of sustainable development were taken into account. Five municipal mechanical-biological treatment plants were chosen for the comparative multi-criteria analysis. Different treatment technologies, such as sand filter, activated sludge, trickling filter, a hybrid system - activated sludge/trickling filter and a hybrid constructed wetland system VF-HF type (vertical and horizontal fl ow) were taken into account. The plants’ capacities were 1 m3∙d-1 (PE=8) and they all meet the environmental regulations. Additionally, a solution with a drainage system was included into the analysis. On the basis of multi-criteria analysis it was found that the preferred wastewater treatment technologies, consistent with the principles of sustainable development, were a sand filter and a hybrid constructed wetland type VF-HF. A drainage system was chosen as the best solution due to the economic criteria, however, taking into consideration the primary (ecological) criterion, employment of such systems on a larger scale disagree with the principles of sustainable development. It was found that activated sludge is the least favourable technology. The analysis showed that this technology is not compatible with the principles of sustainable development, due to a lack of proper technological stability and low reliability.

Go to article

Authors and Affiliations

Krzysztof Jóźwiakowski
Zbigniew Mucha
Agnieszka Generowicz
Stanisław Baran
Jolanta Bielińska
Włodzimierz Wójcik
Download PDF Download RIS Download Bibtex

Abstract

We consider a monetary DSGE model featuring a borrowing constraint such that the amount of debt cannot be larger than a fraction - the debt-to-income (DTI) limit - of borrowers' labor income and the DTI limit is endogenous. The coexistence of financial amplification mechanisms warranted by this model provides a role for a specific macroprudential tool: a countercyclical DTI limit. Conditional on the pre-crisis sample and in a more recent out-of-sample period, our ex-post normative analysis shows that when this policy is implemented the cooperation between central bank and macroprudential authority in pursuing the “two instruments for two goals” strategy delivers an efficient performance in terms of macroeconomic stabilization, significantly outperforming the central bank's policy of “leaning against the wind”. This implies that a central bank should only be focused on its standard objectives (inflation and output stabilization) while financial stability be monitored by a macroprudential authority.
Go to article

Authors and Affiliations

Pasquale Filiani
1

  1. Banque Internationale à Luxembourg
Download PDF Download RIS Download Bibtex

Abstract

This article studies the implications of the Fourth Energy Package and relevant EU Directives for households and explores their potential benefits in Ukraine. Understanding the effects of energy policies on the residential sector is crucial for promoting sustainability amidst global energy and climate challenges. Methods of descriptive legal studies and investment analysis are used to examine the primary EU legislation on renewable energy communities and citizens’ groups, focusing on their applicability to homes and renewable energy cooperatives. The analysis of Ukraine’s experiences with the adoption of green power and incentives have revealed challenges for small solar home installations operating without the feed-in tariff. Introducing net-billing makes projects unfeasible without such a tariff, and even selling electricity through aggregators on the intraday market does not help. Consequently, the payback period for small installations with batteries becomes unreasonably long (exceeding twenty-five years), while larger facilities have shorter payback termsolytechnic Institute, Ukraine (fifteen to seventeen years). These findings highlight the need for careful consideration of household green-power policies. Implementing the Fourth Energy Package in Ukraine requires measures to address the financial feasibility of small solar installations, particularly those lacking feed-in tariff support. Expanding legislative provisions to include consumers of green power, especially those in multi-apartment buildings, can enhance their participation in the electricity producers’ market. Moreover, raising household electricity prices may be necessary to support sustainable energy practices. Overall, this study underscores the importance of evidence-based policymaking for successful power transitions in homes and the broader energy sector.
Go to article

Authors and Affiliations

Galyna Trypolska
1
ORCID: ORCID
Uliana Pysmenna
2
ORCID: ORCID
Iryna Sotnyk
3
ORCID: ORCID
Tetiana Kurbatova
3
ORCID: ORCID
Olena Kryvda
2
ORCID: ORCID

  1. SO Institute for Economics and Forecasting, UNAS, Ukraine
  2. National Technical University of Ukraine Ihor Sikorsky Kyiv Polytechnic Institute, Ukraine
  3. Sumy State University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

According to the European Environment Agency (EEA 2018), air quality in Poland is one of the worst in Europe. There are several sources of air pollution, but the condition of the air in Poland is primarily the result of the so-called low-stack emissions from the household sector. The main reason for the emission of pollutants is the combustion of low-quality fuels (mainly low-quality coal) and waste, and the use of obsolete heating boilers with low efficiency and without appropriate filters. The aim of the study was to evaluate the impact of measures aimed at reducing low-stack emissions from the household sector (boiler replacement, change of fuel type, and thermal insulation of buildings), resulting from environmental regulations, on the improvement of energy efficiency and the emission of pollutants from the household sector in Poland. Stochastic energy and mass balance models for a hypothetical household, which were used to assess the impact of remedial actions on the energy efficiency and emission of pollutants, have been developed. The annual energy consumption and emissions of pollutants were estimated for hypothetical households before and after the implementation of a given remedial action. The calculations, using the Monte Carlo simulation, were carried out for several thousand hypothetical households, for which the values of the technical parameters (type of residential building, residential building area, unitary energy demand for heating, type of heat source) were randomly drawn from probability distributions developed on the basis of the analysis of the domestic structure of households. The model takes the coefficients of correlation between the explanatory variables in the model into account. The obtained results were multiplied so that the number of hypothetical households was equal to 14.1 million, i.e. the real number of households in Poland. The obtained results allowed for identifying the potential for reducing the emission of pollutants such as carbon dioxide, carbon monoxide, dust, and nitrogen oxides, and improving the energy efficiency as a result of the proposed and implemented measures, aimed at reducing low-stack emission, resulting from the policy.

The potential for emissions of gaseous pollutants is 94% for CO, 49% for NOx, 90% for dust, and 87% for SO2. The potential for improving the energy efficiency in households is around 42%.

Go to article

Authors and Affiliations

Dominik Kryzia
ORCID: ORCID
Monika Pepłowska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Rising carbon dioxide emissions are driving climate change and there is growing pressure to find alternative energy sources. Co-combustion of waste with fuels is still occurring in some regions of the world, and it is important to know the compounds emitted from such combustion. This study investigated the emissions from the combustion of wood pellets with waste. The wood pellet was combusted with different additions of polyethylene terephthalate plastic and medium-density fiberboard (10 and 50%), in a low-power boiler (18W). Phenols, alkylphenols, phthalates, biomass burning markers, and polycyclic aromatic hydrocarbon emissions were determined. Gas chromatography coupled with a mass spectrometry detector was used to analyze these compounds after extraction and derivatization in the particulate matter and gas phase. The emissions of biomass burning markers and phthalates were the highest among all the compounds determined for MDF addition. The total emission of these compounds was 685 mg/h and 408 mg/h for 10% addition and 2401 mg/h and 337 mg/h for 50% addition, respectively. For the co-combustion of biomass with PET, PAHs and phenols had the highest emission; the emission was 197 mg/h and 114.5 mg/h for 10% addition and 268 mg/h and 200 mg/h for 50% addition, respectively. In our opinion, the obtained results are insufficient for the identification of source apportionment from household heating. After further study, tested compounds could be treated as markers for the identification of the fuel type combusted in households.
Go to article

Bibliography

  1. Chen, L., Zhao, Y., Li, L., Chen, B. & Zhang, Y. (2012), Exposure assessment of phthalates in non-occupational populations in China, Science of the Total Environment, 427-428, pp. 60-69. DOI:10.1016/j.scitotenv.2012.03.090
  2. Chen, Q., Zhang, X., Bradford, D., Sharifi, V. & Swithenbank, J. (2010). Comparison of emission characteristics of small-scale heating systems using biomass instead of coal, Energy Fuels, 24, 8, pp. 4255-4265. DOI:10.1021/ef100491v
  3. Cincinelli, A., Guerranti, C., Martellini, T. & Scodellini, R. (2019). Residential wood combustion and its impact on urban air quality in Europe, Current Opinion In Environmental Science & Health, 8, pp. 10-14. DOI:10.1016/j.coesh.2018.12.007
  4. Czaplicka, M., Cieślik, E., Komosiński, B. & Rachwał, T. (2019). Emission factors for biofuels and coal combustion in a domestic boiler 18kW, Atmosphere, 10, 12. DOI:10.3390/atmos10120771
  5. Czaplicka, M., Klyta, J., Komosiński, B., Konieczny, T. & Janoszka, K. (2021), Comparison of carbonaceous compounds emission from the co-combustion of coal and waste in boilers used in residential heating in Poland, Central Europe, Energies, 14, 5326, pp. 1-15. DOI:10.3390/en14175326
  6. Czaplicka, M., Węglarz, A., Klejnowski, K. (2001), Analysis of organic contaminants from motor vehicles adsorbed on the particulate matter for PAHs, Chemia Analityczna, 46, pp. 677-689
  7. Demibras, A. (2004). Combustion characteristics of different biomass fuels, Progress in Energy and Combustion Science, 30, pp. 219-230. DOI:10.1016/j.pecs.2003.10.004
  8. Dhahak, A., Grimmer, Ch., Neumann, A., Rüger, Ch., Sklorz, M., Streibel, Th., Zimmermann, R., Mauviel, G. & Burkle-Vitzhum, V. (2020). Real-time monitoring of slow pyrolysis of polyethylene terephthalate (PET) by different mass spectrometric techniques, Waste Management, 106, pp. 226-239. DOI:10.1016/j.wasman.2020.03.028
  9. Hardy, T., Musialik-Piotrowska. A., Ciołek, J., Mościcki, K. & Kordylewski, W. (2012). Negative Effects of Biomass Combustion and Co-combustion in boilers, Environment Protection Engineering, 38, 1, pp. 25-33
  10. Ishaq, M., Ahmad, I., Shakirullah, M., Arsala Khan, M., ur Rehman, H. & Bahadur, A. (2006), Pyrolysis of some whole plastics and plastics-coal mixtures, Energy Conversion and Management, 47, 18-19, pp. 3216-3223. DOI: 10.1016/j.enconman.2006.02.019
  11. Janoszka, K., Czaplicka M. & Klejnowski, K. (2020), Comparison of biomass burning tracers concentration between two winter seasons in Krynica Zdrój, Air Quality, Atmopshere& Health, 13, pp. 379-385. DOI:10.1007/s11869-020-00801-1
  12. Jaworek, K. & Czaplicka, M. (2013), Determination of phthalates in polymer materials – Comparison of GC/MS and GC/ECD methods, Polímeros, 23, pp. 718-724. DOI:10.4322/polimeros.2014.014
  13. Kistler, M., Schmidl, Ch., Padouvas, E., Giebl, H., Lohninger, J., Ellinger, R., Bauer, H. & Puxbaum, H. (2012). Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to central Europe, Atmospheric environment, 51, pp. 86-93. DOI:10.1016/j.atmosenv.2012.01.044
  14. Kojić, I., Bechtel, A., Aleksić, N., Životić, D., Trifunović, S., Gajica, G. & Stojanović, K. (2021), Study of the synergetic effect of co-pyrolysis of lignite and high-density polyethylene aiming to improve utilization of low-rank coal, Polymers, 13, 5, pp. 1-25. DOI:10.3390/polym13050759
  15. Krugly, E., Martuzevicius, D., Puida, E., Buinevicius, K., Stasiulaitiene, I., Radziuniene, I., Minikauskas, A. & Klucininkas, L. (2014), Characterization of gaseous- and particulate-phase emissions from the combustion of biomass-residue-derived fuels in a small residential boiler, Energy Fuels, 28, pp. 5057-5066. DOI:10.1021/ef500420t
  16. Li, D. H., Oh, J. R. & Park, J. (2003), Direct extraction of alkylphenols, chlorophenols and bisphenol A from acid-digested sediment suspension for simultaneous gas chromatographic-mass spectrometric analysis, Journal of Chromatography A, 1012, pp. 207-214. DOI:10.1016/S0021-9673(03)01174-9
  17. Li, Zh., Guo, S., Li, Zh., Wang, Y., Hu, Y., Xing, Y., Liu, G., Fang, R. & Zhu, H. (2020), PM2,5 Associated phenols, phthalates and water-soluble ions from five stationary combustion sources, Aerosol and Air Quality Research, 20, pp. 61-71. DOI:10.4209/aaqr.2019.11.0602
  18. Lim, M. T., Phan, A., Roddy, D. & Harvey, A. (2015). Technologies for measurement and mitigation of particulate emissions from domestic combustion of biomass: A review, Renewable and Sustainable Energy Reviews, 49, pp. 574-584. DOI:10.1016/j.rser.2015.04.090
  19. Musialik-Piotrowska, A., Kordylewski, W., Ciołek J. & Mościcki, K. (2010). Characteristics of air pollutants emitted from biomass combustion in small retort boiler, Environment Protection Engineering, 36, 2, pp. 123-131.
  20. Oh, S.-Y. & Seo, T.-C. (2019) Upgrading biochar via co-pyrolisation of agricultural biomass and polyethylene terephthalate wastes, RCS Advances, 9, pp. 28284-28290. DOI:10.1039/C9RA05518E
  21. Pan, Ch.-X., Wei, X.-Y., Shui, H.-F., Wang, Zh.-C., Gao, J., Wei, Ch., Cao, X.-Zh. & Zong, Zh.-M. (2013), Investigation on the macromolecular network structure of Xianfeng lignite by a new two-step depolymerization, Fuel, 109, pp. 49-53. DOI:10.1016/j.fuel.2012.11.059
  22. Růžičková, J., Kucbel, M., Raclavská, H., Švédová, B., Raclavský, K. & Juchelková, D. (2019). Comparison of organic compounds in char and soot from the combustion of biomass in boilers of various emission classes. Journal of Environment Management, 15, pp. 769-783. DOI:10.1016/j.jenvman.2019.02.038
  23. Růžičková, J., Raclavská, H., Raclavský, K. & Juchelková, D. (2016), Phthalates in PM2,5 airborne particles in the Moravian-Silesian Region, Czech Republic, Perspectives in Science, 7, pp. 178-183. DOI:10.1016/j.pisc.2015.11.029
  24. Salapasidou, M., Samara, C. & Voutsa, D. (2011), Endocrine disrupting compounds in the atmosphere of the urban area of Thessaloniki, Greece, Atmospheric Environment, 45, 22, pp. 3720-3729. DOI:0.1016/j.atmosenv.2011.04.025
  25. Song, B. & Hall, P. (2020). Densification of biomass and waste plastic blends as a solid fuel: hazards, advantages, and perspectives, Frontiers in Energy Research, 8, 58, pp. 1-7. DOI:10.3389/fenrg.2020.00058
  26. Sun, J., Shi, G., Jin, W., Chen, Y., Shen, G., Tian, Ch., Zhang, Y., Zong, Zh., Cheng, M., Zhang, X., Zhang, Y., Liu, Ch., Lu, J., Wang, H., Xiang, J., Tong, L. & Zhang, X. (2018). Emissions factors of organic carbon and elemental carbon for residential coal and biomass fuels in China – A new database for 39 fuel-stove combinations, Atmospheric Environment, 190, pp. 241-248. DOI:10.1016/j.atmosenv.2018.07.032
  27. Sun, L., Wang, F., Xie, Y., Feng, J. & Wang, Q. (2012), The combustion performance of medium density fiberboard treated with fire retardant microspheres, Bioresources, 7, pp. 593-601.
  28. Szyszlak-Bargłowicz, J., Zając, G. & Słowik, T. (2015). Hydrocarbon emissions during biomass combustion, Polish Journal of Environmental Studies, 24, pp. 1349-1354. DOI:10.15244/pjoes/37550
  29. Tomsej, T., Horak, J., Tomsejowa, S., Krpec, K., Klanova, J., Dej, M. & Hopan, F. (2018) The impact of co-combustion of polyethylene plastics and wood in the small residential boiler on emissions of gaseous pollutants, particulate matter, PAHs and 1,3,5-triphenylbenzene, Chemosphere, 196, pp. 18-24. DOI:10.1016/j.chemosphere.2017.12.127
  30. Uğuz, C., Işcan, M. & Togan, I. (2009), Alkylphenols in the environment and their adverse effects on living organisms, Kocatepe Veterinary Journal, 2, 1, pp. 49-58.
  31. Wang, S., Wang, W. & Yang, H. (2018), Comparison of product carbon footprint protocols: Case study on medium-density fiberboard in China, International Journal of Environmental Research and Public Health, 15, 10, pp. 1-14. DOI:10.3390/ijerph15102060
  32. Wasilewski, R. & Siudyga, T. (2013), Odzysk energetyczny odpadowych tworzyw sztucznych, Chemik, 67, 5, pp. 435-445.
  33. Williams. A., Jones. J. M., Ma. L & Pourkashanian, M. (2012). Pollutants from the combustion of solid biomass fuels, Progress in Energy and Combustion Science, 38, pp. 113-137. DOI:10.1016/j.pecs.2011.10.001
  34. Zeng, Q., Lu, Q., Zhou, Y., Chen, N., Rao, J. & Fan, M. (2018), Circular development of recycled natural fibers from medium density fiberboard wastes, Journal of Cleaner Production, 8, pp. 1-17. DOI:10.1016/j.jclepro.2018.08.166
  35. Zubkova, V. & Czaplicka, M. (2012), Changes in the structure of plasticized coals caused by extraction with dichloromethane, Fuel, 96, pp. 298-305. DOI:10.1016/j.fuel.2011.12.067
  36. Zubkova, V., Czaplicka, M. & Puchala, A. (2016), The influence addition of coal tar pitch (CTP) and expired pharmaceuticals (EP) on properties and composition of pyrolysis products for lower and higher rank coal, Fuel, 170, pp. 197-209. DOI:10.1016/j.fuel.2011.12.067
Go to article

Authors and Affiliations

Justyna Klyta
1
ORCID: ORCID
Katarzyna Janoszka
1
ORCID: ORCID
Marianna Czaplicka
1
ORCID: ORCID
Tomasz Rachwał
1
ORCID: ORCID
Katarzyna Jaworek
1
ORCID: ORCID

  1. Institute of Environmental Engineering PAS, Poland
Download PDF Download RIS Download Bibtex

Abstract

Russia’s use of one of its energy resources as a tool of political pressure in 2021 destabilized the economies of many European countries. The energy crisis was exacerbated by the outbreak of Russia’s war with Ukraine in February 2022, when many countries, including those of the EU, responded by imposing sanctions on energy resources from Russia. The situation also affected Polish households. Until then, Russia had been Poland’s main supplier of coal and natural gas. It is estimated that 3.8 million households were threatened by the uncertainty of hard-coal supplies for the 2022/2023 heating season. The article presents an analysis of the supply and demand of the main fossil energy resources consumed by Polish households for heating purposes. Discussing the supply of a given raw material, both domestic production and imports are presented. The inability to increase domestic coal production for households in the short term (it is a long-term process) resulted in the introduction of intervention imports. In the case of imports, attention was paid to the need to change suppliers as well as import routes. The article also analyzes the prices of major energy carriers for domestic households from January 2018 to March 2023. Rapidly rising prices of hard coal at fuel depots in the third and fourth quarters of 2022 were higher than natural gas prices for households by PLN 13–16/GJ and amounted to PLN 81–101/GJ. By comparison, natural gas prices were then in the range of 65–88 PLN/GJ. In the first quarter of 2023, the prices of these two energy carriers had already reached a similar level (in the order of 80 PLN/GJ).
Go to article

Authors and Affiliations

Katarzyna Stala-Szlugaj
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article concerns the mutual expanding and enriching influence of the social history and historical demographics research issues, visible in popular historiography, at least since the end of the 20th century. The author uses selected achievements of international historiography as a backdrop for a presentation of the main achievements of Polish historical demographers, who conducted modern studies into the forms and living patterns in the territory of Poland ranging from the late mediaeval times up to the 20th century, on a larger scale than ever in the past. The article highlights the presence of new sociocultural and demographic issues such as areas of solitary females, location and significance of the elderly, occurrence of the life cycle servants phenomenon in the Old-Polish society.

Go to article

Authors and Affiliations

Cezary Kuklo
Download PDF Download RIS Download Bibtex

Abstract

We estimate the size of income underreporting in Poland by following and extending the consumption method of Pissarides and Weber (1989). Our study shows that underreporting of income occurs among households with income from self-employment. We do not find any significant underreporting activity by the employees working in the private sector. The main findings indicate that roughly one-fourth of the total income of self-employed households is not reported in Poland. This share varies between 20 to 30 percent from 2005 to 2017 with a decreasing trend.
Go to article

Authors and Affiliations

Mehmet Burak Turgut
1
Tomasz Tratkiewicz
2

  1. Department of Macroeconomics and International Trade Theory, Faculty of Economic Sciences, University of Warsaw, Poland
  2. Faculty of Economics and Sociology, University of Łódź, Poland; CASE – Center for Social and Economic Research
Download PDF Download RIS Download Bibtex

Abstract

The growing demand for fresh water and its scarcity are the major problems encountered in semi-arid cities. Two different techniques have been used to assess the main determinants of domestic water in the Sedrata City, North-East Algeria: prin-cipal component analysis (PCA) and artificial neural networks (ANNs). To create the ANNs models based on the PCA, twelve explanatory variables are initially investigated, of which nine are socio-economic parameters and three physical char-acteristics of building units. Two optimum ANNs models have been selected where correlation coefficients equal to 0.99 in training, testing and validation phases. In addition, results demonstrate that the combination of socio-economic parameters with physical characteristics of building units enhances the assessment of household water consumption.
Go to article

Authors and Affiliations

Menal Zeroual
1
Azzedine Hani
1
Amir Boustila
2

  1. University of Badji Mokhtar, Faculty of Earth Sciences, Laboratory of water resource and sustainable development, BP 12 / 23000 Annaba, Algeria
  2. University of Badji Mokhtar, Faculty of Earth Sciences, Laboratory of natural resource and development, Annaba, Algeria

This page uses 'cookies'. Learn more