Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A common problem in transient rotordynamic simulations is the numerical effort necessary for the computation of hydrodynamic bearing forces. Due to the nonlinear interaction between the rotordynamic and hydrodynamic systems, an adequate prediction of shaft oscillations requires a solution of the Reynolds equation at every time step. Since closed-form analytical solutions are only known for highly simplified models, numerical methods or look-up table techniques are usually employed. Numerical solutions provide excellent accuracy and allow a consideration of various physical influences that may affect the pressure generation in the bearing (e.g., cavitation or shaft tilting), but they are computationally expensive. Look-up tables are less universal because the interpolation effort and the database size increase significantly with every considered physical effect that introduces additional independent variables. In recent studies, the Reynolds equation was solved semianalytically by means of the scaled boundary finite element method (SBFEM). Compared to the finite element method (FEM), this solution is relatively fast if a small discretization error is desired or if the slenderness ratio of the bearing is large. The accuracy and efficiency of this approach, which have already been investigated for single calls of the Reynolds equation, are now examined in the context of rotordynamic simulations. For comparison of the simulation results and the computational effort, two numerical reference solutions based on the FEM and the finite volume method (FVM) are also analyzed.
Go to article

Authors and Affiliations

Simon Pfeil
1
ORCID: ORCID
Fabian Duvigneau
1
ORCID: ORCID
Elmar Woschke
1
ORCID: ORCID

  1. Otto von Guericke University, Institute of Mechanics, Universitätspl. 2, 39106 Magdeburg, Germany
Download PDF Download RIS Download Bibtex

Abstract

Hydrodynamic three tilting-pad journal bearing is analyzed in the paper. It is shown that, when assembling that type of not controlled bearing, it is impossible to obtain a small clearance between the pad and the journal at high frequency of journal rotation. In a static state, i.e. when the journal is immobile, such a bearing should be assembled with a large interference between the pads and the journal in order to guarantee the small clearance at rotation. At start, when the hydrodynamic lubricating wedges between the pads and journal are absent, the bearing would work with dry friction, resulting in quick wear of pads and high load of the drive motor. Apart of that, it is impossible to control the power consumption and temperature regime neither for idle nor for working rotation of the journal. The proposed automatic control gives a possibility to regulate the clearance between the pads and the journal by measuring and controlling the axial force of the pad load, and in such a way to improve work conditions of the bearing.

Go to article

Authors and Affiliations

Andrejus Marcinkevičius
Download PDF Download RIS Download Bibtex

Abstract

Rotors of rotating machines are often mounted in hydrodynamic bearings. Loading alternating between the idling and full load magnitudes leads to the rotor journal eccentricity variation in the bearing gap. To avoid taking undesirable operating regimes, its magnitude must be kept in a certain interval. This is offered by the hydrodynamic bearings lubricated with smart oils, the viscosity of which can be changed by the action of a magnetic field. A new design of a hydrodynamic bearing lubricated with magnetically sensitive composite fluid is presented in this paper. Generated in the electric coil, the magnetic flux passes through the bearing housing and the lubricant layer and then returns to the coil core. The action of the magnetic field on the lubricant affects the apparent fluid viscosity and thus the position of the rotor journal in the bearing gap. The developed mathematical model of the bearing is based on applying the Reynolds equation adapted for the case of lubricants exhibiting the yielding shear stress. The results of the performed simulations confirmed that the change of magnetic induction makes it possible to change the bearing load capacity and thus to keep the rotor journal eccentricity in the required range. The extent of control has its limitations. A high increase in the loading capacity can arrive at the rotor forced vibration’s loss of stability and induce large amplitude oscillation.
Go to article

Bibliography

  1. W.-X. Wu and F. Pfeiffer, “Active vibration damping for rotors by a controllable oil-film bearing,” in Proc. of the Fifth International Conference on Rotor Dynamics, 1998, pp. 431‒442.
  2. J.M. Krodkiewski and L.D. Sun, “Modelling of multi-bearing rotor systems incorporating an active journal bearing,” J. Sound Vib., vol. 210, no. 3, pp. 215‒229, 1998.
  3. P.M. Przybylowicz, “Stability of journal bearing system with piezoelectric elements,” Mach. Dyn. Probl., vol. 24, no. 1, pp. 155‒171, 2000.
  4. T. Szolc, K. Falkowski, M. Henzel, and P. Kurnyta-Mazurek, “Determination of parameters for a design of the stable electro-dynamic passive magnetic support of a high-speed flexible rotor,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 1, pp. 91‒105, 2019.
  5. H. Urreta, Z. Leicht, A. Sanchez, A. Agirre, P. Kuzhir, and G. Magnac, “Hydrodynamic Bearing Lubricated with Magnetic Fluids,” J. Intell. Mater. Syst. Struct., vol. 21, 2010.
  6. X. Wang, H. Li, M. Li, H. Bai, G. Meng, and H. Zhang, “Dynamic characteristics of magnetorheological fluid lubricated journal bearing and its application to rotor vibration control,” J. Vibroeng., vol. 17, pp. 1912‒1927, 2015.
  7. J. Zapoměl and P. Ferfecki, “The influence of ferromagnetic fluids on performance of hydrodynamic bearings,” Vibroeng. Procedia, vol. 27, pp. 133‒138, 2019.
  8. J. Zapoměl and P. Ferfecki, “Study of the load capacity and vibration stability of rotors supported by hydrodynamic bearings lubricated by magnetically sensitive oil,” in Proc. of the 14th International Conference on Dynamics of Rotating Machines, 2021, pp. 1‒9.
  9. D. Susan-Resiga and L. Vékás, “From high magnetization ferrofluids to nano-micro composite magnetorheological fluid: properties and applications,” Rom. Rep. Phys., vol. 70, pp. 1‒29, 2018.
  10. N. Ida. Engineering Electromagnetics. Heidelberg: Springer, 2015.
  11. P. Ferfecki, J. Zapoměl, and J. Kozánek, “Analysis of the vibration attenuation of rotors supported by magnetorheological squeeze film dampers as a multiphysical finite element problem,” Adv. Eng. Software, vol. 104, pp. 1‒11, 2017.
  12. J. Zapoměl. Computer Modelling of Lateral Vibration of Rotors Supported by Hydrodynamical Bearings and Squeeze Film Damper. Ostrava: VSB-Technical University of Ostrava, 2007. [in Czech]
  13. E. Krämer. Dynamics of Rotors and Foundations. Berlin, Heidelberg: Springer-Verlag, 1993.
Go to article

Authors and Affiliations

Jaroslav Zapoměl
1 2
Petr Ferfecki
1 3

  1. Department of Applied Mechanics, VSB – Technical University of Ostrava, Ostrava, Czech Republic
  2. Department of Dynamics and Vibration, Institute of Thermomechanics, Prague, Czech Republic
  3. IT4Innovations National Supercomputing Center, VSB – Technical University of Ostrava, Ostrava, Czech Republic

This page uses 'cookies'. Learn more