Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The amorphous Mg-based alloys may be used as metallic biomaterials for resorbable orthopedic implants. The Mg-Zn-Ca metallic glasses demonstrate variable in time degradation rate in simulated body fluid. In this work the Mg66Zn30Ca4 alloy was chosen as a substrate for coatings. This paper reports on the surface modification of a Mg66Zn30Ca4 metallic glass by plasma electrolytic oxidation (PEO). The structure characterization of uncoated Mg66Zn30Ca4 alloy was performed by using TEMand XRD method. The immersion tests of coated and uncoated Mg66Zn30Ca4 alloy were carried out in Ringer’s solutionat 37°C. The volume of released hydrogen by immersion tests was determined. The coatings structure and chemical composition after immersion tests by SEM/EDS were studied. Based on SEM images of surface structure samples, immersion tests results and hydrogen evolution measurement was proposed the course of corrosion process in Ringer’s solution for Mg-based metallic glasses with PEO coating. Results of immersion tests in Ringer’s solution allowed to determine the amount of evolved hydrogen in a function of time for Mg66Zn30Ca4 metallic glass and sample with PEO coating. In comparison to the non-coated Mg66Zn30Ca4 alloy, the sample with PEO layer showed a significantly decreased hydrogen evolution volume.

Go to article

Authors and Affiliations

K. Cesarz-Andraczke
A. Kazek-Kęsik
Download PDF Download RIS Download Bibtex

Abstract

In this work, conversion coatings based on nitrates Ca(NO 3) 2 and Zn(NO 3) 2 were produced on the surface of MgZn49Ca4 to protect against corrosion. The main aim of this study was to prepare dense and uniform coatings using a conversion method (based on nitrates Ca(NO 3) 2 and Zn(NO 3) 2) for resorbable Mg alloys. The scientific goal of the work was to determine the pathway and main degradation mechanisms of samples with nitrate-based coatings as compared with an uncoated substrate. Determining the effect of the coatings produced on the Mg alloy was required to assess the protective properties of Mg alloy-coating systems. For this purpose, the morphology and chemical composition of coated samples, post corrosion tests and structural tests of the substrate were performed (optical microscopy, SEM/EDS). Immersion and electrochemical tests of samples were also carried out in Ringer’s solution at 37°C. The results of immersion and electrochemical tests indicated lower corrosion resistance of the substrate as compared with coated samples. The hydrogen evolution rate of the substrate increased with the immersion time. For coated samples, the hydrogen evolution rate was more stable. The ZnN coating (based on Zn(NO 3) 2) provides better corrosion protection because the corrosion product layer was uniform, while the sample with a CaN coating (based on Ca(NO 3) 2) displayed clusters of corrosion products. It was found that pitting corrosion on the substrate led to the complete disintegration and non-uniform corrosion of the coated samples, especially the CaN sample, due to the unevenly-distributed products on its surface.
Go to article

Bibliography

  1.  K. Kowalski and M. Jurczyk, “Porous magnesium based bionanocomposites for medical application”, Arch. Metall. Mater. 60(2), 1433‒1435, (2015).
  2.  A. Milenin, M. Gzyl, T. Rec, and B. Plonka, “Computer aided design of wires extrusion from biocompatible mg-ca magnesium alloy”, Arch. Metall. Mater. 59(2), 551‒556 (2014).
  3.  F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend, “Degradable biomaterials based on magnesium corrosion”, Curr. Opin. Solid. State Mater Sci. 12, 63‒72 (2008).
  4.  S. Kumar, D. Kumar, and J. Jain, “Surface and interface characteristics of CeO2 doped Al2O3 coating on solution treated and peak aged AZ91 Mg alloy”, Surf. Coat. Tech. 332, 511‒521 (2017).
  5.  Z.Xu, U.Eduok, and J.Szpunar, “Effect of annealing temperature on the corrosion resistance of MgO coatings on Mg alloy”, Surf. Coat. Tech. 357, 691‒697 (2019).
  6.  Y.Gao, L.Zhao, X.Yao, R.Hang, and B.Tang, “Corrosion behavior of porous ZrO2 ceramic coating on AZ31B magnesium alloy”, Surf. Coat. Tech. 349, 434‒441 (2018).
  7.  R. Ji, M. Ma, Y. He, C. Liu, and J. Wu, “Improved corrosion resistance of Al2O3 ceramic coatings on AZ31 magnesium alloy fabricated through cathode plasma electrolytic deposition combined with surface pore-sealing treatment”, Ceram. Int. 44, 15192‒15199 (2018).
  8.  P. Liu, X. Pan, W. Yang, K. Cai, and Y. Chen, “Al2O3-ZrO2 ceramic coatings fabricated on WE43 magnesium alloy by cathodic plasma electrolytic deposition”, Mater. Lett. 70, 16‒18 (2012).
  9.  J.V. Rau, I. Antoniac, M. Filipescu, C. Cotrut, and M. Dinescu, “Hydroxyapatite coatings on Mg-Ca alloy prepared by Pulsed Laser Deposition: Properties and corrosion resistance in Simulated Body Fluid”, Ceram. Int. 44, 16678‒16687 (2018).
  10.  S. Jiang, S. Cai, Y. Lin, X. Bao, and G. Xu, “Effect of alkali/acid pretreatment on the topography and corrosion resistance of as-deposited CaP coating on magnesium alloys”, J. Alloys. Compd. 793, 202‒211 (2019).
  11.  J.G. Acheson, S. McKillop, P. Lemoine, A.R. Boyd, and B.J. Meenan, “Control of magnesium alloy corrosion by bioactive calcium phosphate coating: Implications for resorbable orthopaedic implants”, Materialia 6, 1‒10 (2019).
  12.  P. Shi, B. Niu, E. Shanshan, Y. Chen, and Q. Li, “Preparation and characterization of PLA coating and PLA/MAO composite coatings on AZ31 magnesium alloy for improvement of corrosion resistance”, Surf. Coat. Tech. 262, 26‒32 (2015).
  13.  S. Manna, A.M. Donnell, N. Kaval, and F. Marwan, “Improved design and characterization of PLGA/PLA-coated Chitosan based micro- implants for controlled release of hydrophilic drugs”, Int. J. Pharm. 547(1–2), 122‒132 (2018).
  14.  L. Li, L. Cui, R. Zeng, S. Li, and M. Bobby Kannan, “Advances in functionalized polymer coatings on biodegradable magnesium alloys – A review”, Acta Biomater. 79, 23‒36 (2018).
  15.  Y. Lin, S. Cai, S. Jiang, D. Xie, and G. Xu, “Enhanced corrosion resistance and bonding strength of Mg substituted β-tricalcium phosphate/ Mg(OH)2 composite coating on magnesium alloys via one-step hydrothermal method”, J. Mech. Behav. Biomed. 90, 547‒555 (2019).
  16.  H.R. Bakhsheshi-Rad, E. Hamzah, A.F. Ismail, M. Aziz, and A. Chami, “In vitro degradation behavior, antibacterial activity and cytotoxicity of TiO2-MAO/ZnHA composite coating on Mg alloy for orthopedic implants”, Surf. Coat. Tech. 334, 450‒460 (2018).
  17.  H.R. Bakhsheshi-Rad, A.F. Ismail, M. Aziz, Z. Hadisi, M. Omidi, and X. Chen, “Antibacterial activity and corrosion resistance of Ta2O5 thin film and electrospun PCL/MgO-Ag nanofiber coatings on biodegradable Mg alloy implants”, Ceram. Int. 45, (9), 11883‒11892 (2019).
  18.  E. Yılmaz, B. Çakıroğlu, A. Gökçe, F. Findik, and M. Özacar, “Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition”, Mater. Sci. Eng:. C 101, 292‒305 (2019).
  19.  M. Nowak, B. Płonka, A. Kozik, M. Karaś, M. Mitka, and M. Gawlik, “Conversion coatings produced on AZ61 magnesium alloy by low-voltage process”, Arch. Metall. Mater. 61, 419‒424 (2016).
  20.  R. Zen, G. Sun, Y. Song, F. Zhang, S. Li, H. Cui, and E. Han, “Influence of solution temperature on corrosion resistance of Zn-Ca phosphate conversion coating on biomedical Mg-Li-Ca alloys”, Trans. Nonferrous. Met. Soc. China 23(11), 3293‒3299 (2013).
  21.  W. Zai, X. Zhang, Y. Zhao, H.C. Man, G. Li, and J. Lian, “Comparison of corrosion resistance and biocompatibility of magnesium phosphate (MgP), zinc phosphate (ZnP) and calcium phosphate (CaP) conversion coatings on Mg alloy”, Surf. Coat. Tech. 397, 1‒17 (2020).
  22.  N. Van Phuong and S. Moon, “Comparative corrosion study of zinc phosphate and magnesium phosphate conversion coatings on AZ31 Mg alloy”, Mater. Lett. 122, 341‒344 (2014).
  23.  Z. Gao, X. Li, and S. Jiang, “Current status, opportunities and challenges in chemical conversion coatings for zinc”, Colloid Surface A 546, 221‒236 (2018).
  24.  J. Hofstetter, M. Becker, E. Martinelli, A.M. Weinberg, B. Mingler, H. Kilian, S. Pogatscher, P.J. Uggowitzer, and J.F. Loffler, High- Strength Low-Alloy (HSLA) Mg–Zn–Ca alloys with Excellent Biodegradation Performance, JOM 66(4), 566‒572 (2014).
  25.  S. Wasiur-Rahman, and M. Medraj, “Critical assessment and thermodynamic modeling of the binary Mg–Zn, Ca–Zn and ternary Mg– Ca–Zn systems”, Intermetallics 17, 847–864 (2009).
  26.  S. Kim, Y. Kim, Y.K. Lee, and M. Lee, “Determination of ideal Mg–35Zn–xCa alloy depending on Ca concentration for biomaterials”, J. Alloys Compd.766, 994‒1002 (2018).
  27.  P. Dudek, A. Fajkiel, T. Reguła, and K. Saja, “Selected problems of a technology of the AZ91 magnesium alloy melt treatment”, Prace Instytutu Odlewnictwa, zeszyt 1, Tom XLIX, 27‒42 (2009).
  28.  M. Liu, P. Schmutz, P.J. Uggowitzer, G. Song, and A. Atrens, “The influence of yttrium (Y) on the corrosion of Mg–Y binary alloys”, Corros. Sci. 52, 3687‒3701 (2010).
  29.  F. Qin, G. Xie, Z. Dan, S. Zhu, and I. Seki, “Corrosion behavior and mechanical properties of Mg-Zn-Ca amorphous alloys”, Intermetallics 42, 9‒13 (2013).
  30.  A. Srinivasan, C. Blawert, Y. Huang, C.L. Mendis, K.U. Kainer, and N. Hort, “Corrosion behavior of Mg-Gd-Zn based alloys in aqueous NaCl solution”, J. Magnes. Alloys. 2, 245‒256 (2014).
  31.  J. Sunb, S. Cai, Q. Li, Z. Li, and G. Xu, “UV-irradiation induced biological activity and antibacterial activity of ZnO coated magnesium alloy”, Mater. Sci. Eng: C 114, 1‒9 (2020).
  32.  H.R. Bakhsheshi-Rad, E. Hamzah, A.F. Ismail, M. Aziz, M. Kasiri-Asgarani, and H. Ghayour, “In vitro corrosion behavior, bioactivity, and antibacterial performance of the silver-doped zinc oxide coating on magnesium alloy”, Mater. Corros. 68, 1228‒1236 (2017).
Go to article

Authors and Affiliations

Katarzyna Cesarz-Andraczke
1

  1. Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this work the nickel-based coatings were obtained by electroless catalytic deposition on light-hardened resins dedicated for 3D printing by SLA method. The effect of external magnetic field application on the properties of nickel-based coatings was determined. During metallization, the magnetic field was applied to the sample’s surface with different orientations. Due to the magnetic properties of metallic ions, the influence of the magnetic field on coatings properties is expected. The coatings were analyzed by Energy-dispersive X-ray spectroscopy (ED S) the X-Ray diffraction (XRD ) methods, and surface morphology was observed by scanning electron microscopy (SEM). The catalytic properties in a hydrogen evolution reaction (HER ) were measured by electrochemical method in 1 M NaOH solution. The best catalytic activity has been observed in the case of the ternary Ni-Fe-P alloy deposited under a parallel magnetic field. The primary outcome of the presented research is to produce elements based on 3D printing from resins, which can then be metallized and used for highly-active materials deposited on complex 3D models. Furthermore, these elements can be used as low-cost, highly-developed sensors and catalysts for various chemical processes.
Go to article

Authors and Affiliations

K. Kołczyk-Siedlecka
1
ORCID: ORCID
D. Kutyła
1
ORCID: ORCID
K. Skibińska
1
ORCID: ORCID
A. Jędraczka
1
ORCID: ORCID
P. Żabiński
1
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland

This page uses 'cookies'. Learn more