Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Looking for alternative sources of energy to generate electricity has been a hot topic for society for a very long time. The need to replace current energy resources such as fuel, oil, and gas is increasing, and the replacement comes from energy obtained from the wind, sun, and sea waves. In many cases, valuable raw materials can be obtained in addition to energy production, while having a significant environmental effect simultaneously.
The shortage of energy and raw material resources in many countries stimulates the growth of interest in all potential sources of energy – solar, wind, wave, tidal – has lead to accelerating the demand for oil and gas, shale gas, as well as the expansion of the areas for the cultivation of technical crops for biofuels. Classical energy resources like oil, gas and coal are serious polluters of the natural environment. Especially harmful is the release of carbon dioxide and sulfur oxides during the exploitation of these resources.
A significant energy raw material potential of non-traditional resources lies in the waters and bottom of the Black Sea, which is a natural geobiotechnological reactor, capable of producing a variety of energy raw resources.
This paper discusses the use of hydrogen sulfide available in the Black Sea waters to produce energy and useful industrial products and proposes the respective. The technology also has an ecological effect in terms of the purification of the hydrogen sulfide pool. The paper also discusses some technologies for the separation of hydrogen sulfide to hydrogen and sulfur. An estimation of the heat value of hydrogen sulfide in the water of the Black Sea is also presented.
Go to article

Authors and Affiliations

Iskra Simova
1
Rositsa Velichkova
1
Milka Uzunova
2
Radostina Angelova
1
Peter Stankov
1
Koycho Atanasov
3

  1. Hydroaerodynamic and Hydraulic Machines, Technical University of Sofia, Bulgaria
  2. ECAM-EPMI, France
  3. Technical University of Sofia, Bulgaria
Download PDF Download RIS Download Bibtex

Abstract

Hydrogen sulfide (H2S) regulates many critical processes of plants. The effect of sodium hydrogen sulfide as H2S agent was investigated in basil plants under cadmium stress. A completely randomized design with three different concentrations (0, 50 and 100 μM) of CdCl2 and two levels of NaHS (0 and 100 μM) was used in this study. Cadmium exposure reduced growth parameters and relative water content. Cd also caused a significant increase in ion leakage and higher oxidative stress in terms of lipid peroxidation and H2O2 production. Although exogenous NaHS used in non-stressed control plants negatively affected growth and physiological parameters, it improved the root/shoot length ratio and fresh weight in basil plants under Cd 50 μM exposure. Moreover, NaHS alleviated deleterious effects of cadmium on ion leakage, relative water content and photosynthetic pigments of leaves. The activity of antioxidant enzymes like catalase, peroxidase and ascorbate peroxidase were also enhanced by NaHS in plants under moderate cadmium stress. Our results show that NaHS 50 μM ameliorates growth retardation induced by cadmium 50 μM stress in basil plants, probably through regulating physiological parameters such as photosynthetic pigments content, relative water content and the activity of antioxidant enzymes.

Go to article

Authors and Affiliations

Hakimeh Oloumi
Mansooreh Khodashenas

This page uses 'cookies'. Learn more