Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, Strontium Bismuth Niobate (SrBi2-xTmxNb2O9 with 0 ≤ x ≤ 0.1) doped by Tm was synthesized using by the hydrothermal method. The microstructure and electrical properties were mainly investigated. XRD analysis showed a single-phase orthorhombic structure for Tm-doped SrBi2Nb2O9 samples. The crystallite size is anisotropic and the strain is apparently independent of Tm amount. Dielectric properties for doped SrBi2Nb2O9 with Tm3+ ion have the same trend discussed for the pure sample. FTIR resulats showed that NbO6 octahedral is formed, on one hand, and on the other hand, it shows that spectras for doped and undoped samples are nearly the same. The Cross-section of ceramics showed the plate-like morphology, also the distribution of the pore in ceramics are observed for all samples. Tm dopants produce only minor changes in the impendence parameter values at room temperature. The luminescent (PL) properties of Tm-doped SrBi2Nb2O9 ceramic powders were investigated. The optimum Tm3+ concentration for the maximum PL intensity was found to be at x = 0.075.
Go to article

Authors and Affiliations

Mohamed Afqir
1
ORCID: ORCID
Stevan Stojadinović
2
ORCID: ORCID
Mohamed Elaatmani
1
ORCID: ORCID
Abdelouahad Zegzouti
1
ORCID: ORCID
Nabiha Tahiri
1
Mohamed Daoud
1
ORCID: ORCID

  1. Université Cadi Ayyad, Faculté des Sciences Semlalia, Laboratoire des Sciences des Matériaux et Optimisation des Procédés, Marrakech, Morocco
  2. University of Belgrade, Faculty of Physics, Studentskitrg 12-16, Belgrade, Serbia
Download PDF Download RIS Download Bibtex

Abstract

There is a sulfide mineralization vein type in the Cindakko area, Maros Regency, South Sulawesi. The results of mineralogical studies on the Cindakko prospects for sulfide ore mineralization are explained in this paper. Petrographic, mineragraphic, and XRD methods analyzed the mineralization and alteration samples from the research area. The results showed that the host rock mineralization is basalt, a member of the Baturappe-Cindakko Volcano from the Late Miocene age. The identified hydrothermal alteration mineral associations include quartz, chlorite, epidote, biotite, actinolite, and pyrite, generally formed in propyllitic alteration zones mainly characterized by chlorite. The analysis provides the occurrence of mineralization types: crustiform-banding quartz veins, vuggy quartz, and disseminated, contain hypogenic pyrite, chalcopyrite, sphalerite, bornite, and tennantite ores, and supergene ore minerals in the form of covellite. Ore textures recognized under a microscope are intergrowth, replacement, open-space filling, and exsolution. Based on the interpretation of temperature stability of hydrothermal alteration minerals, it is concluded that it was formed at approximately 200 to 320°C with the hydrothermal fluid pH almost neutral. The fundamental characteristics of hydrothermal alteration, ore mineral assemblage and texture, mineralization type, temperature range form, and hydrothermal fluid pH indicate that the mineralization in the Cindakko Prospect is an epithermal type.
Go to article

Authors and Affiliations

Ibnu Munzir
1
ORCID: ORCID
Arif Arif
2
Musri Mawaleda
3
Irzal Nur
4

  1. Institute of Geological Science, Jagiellonian University, Kraków, Poland
  2. Department of Earth Resources Engineering, Kyushu University; Japan
  3. Geology Engineering Department, Hasanuddin University, Gowa 92171, South Sulawesi; Indonesia
  4. Mining Engineering Department, Hasanuddin University, Gowa 92171, South Sulawesi; Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Rare-earth elements have countless applications in electronic devices that use state-of-the-art technologies. Experimental research is aimed at making it easier to find them, by predicting their behavior in the processes that form mineral ores.
Go to article

Authors and Affiliations

Bogusław Bagiński
1

  1. Faculty of Geology, University of Warsaw
Download PDF Download RIS Download Bibtex

Abstract

In this work we discuss a method of preparation of a highly sensitive light detector based on ZnO nanorods. A photoresistor constructed by us is based on a heterojunction between high quality ZnO nanorods and high resistivity p-type Si used as a substrate for nanorods’ deposition. ZnO nanorods are grown by a modified version of a microwave assisted hydrothermal method which allows for growth of high quality ZnO nanorods in a few minutes. The obtained photoresistor responds to a wide spectral range of light starting from near infrared (IR) to ultraviolet (UV). Properties of the detector are evaluated. We propose the use of the detector as an optical switch.

Go to article

Authors and Affiliations

B.S. Witkowski
R. Pietruszka
S. Gieraltowska
L. Wachnicki
H. Przybylinska
M. Godlewski
Download PDF Download RIS Download Bibtex

Abstract

Atmospheric precipitation is the major input to the soil water balance. Its amount, intensity, and temporal distribution have an indubitable influence on soil moisture. The aim of the study (conducted in the years 2010–2013) was to evaluate soil water balance in an apple orchard as determined by daily rainfall. The amount and intensity of rainfall and daily evapotranspiration were measured using an automatic weather station. Changes in soil water content was carried out using capacitance probes placed at a depth of 20, 40 and 60 cm. The most common were single events of rainfall of up to 0.2 mm, while 1.3–3.6 mm rains delivered the greatest amount of water. A significant correlation was found between the amount of daily rainfall and changes in water content of individual soil layers. The 15–45 cm and 15–65 cm layers accumulated the greatest amount of high rainfall. The study showed a significant influence of the initial soil moisture on changes in the water content of the analysed layers of the soil profile. The lower its initial moisture content was, the more rainwater it was able to accumulate.
Go to article

Authors and Affiliations

Waldemar Treder
1
ORCID: ORCID
Krzysztof Klamkowski
1
ORCID: ORCID
Anna Tryngiel-Gać
1
ORCID: ORCID
Katarzyna Wójcik
1
ORCID: ORCID

  1. The National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, a new chemically modified cellulose polymer-capped ZnO nanopowder prepared by hydrothermal method using chemically modified cellulose polymer as capping agent was successfully reported. The structural characteristics of CMC-capped ZnO nanopowder was reported by FTIR, XRD, SEM and EDX studies. XRD results revealed crystallographic properties like crystal composition, phase purity and crystallite size of the prepared CMC-capped ZnO nanopowder and average size calculated by Debye Scherrer formula as 14.66 nm. EDX studies revealed that the presence of elemental compositions of capping agent in the nanopowder samples. The optical characterization of the CMC-capped ZnO nanopowder was studied using UV absorption (λmax = 303 nm) and PL spectroscopy (λex = 295 nm). The average crystal diameter and grain size were calculated by effective mass approximation formula and compared with XRD findings that agreed well and verified CMC capped ZnO with particle size of 193 nm. Thus, the promising optical characteristics shown by the synthesized CMC capped ZnO nanopowders exposes its potential usage in bio-medical fields.
Go to article

Bibliography

[1] M. Abbas, M. Buntinx, W. Deferme, R. Peeters, Nanomaterials 9 (10), 1494 (2019). DOI: https://doi.org/10.3390/nano9101494
[2] J. Chen, Q. Yu, X. Cui, M. Dong, J. Zhang, C. Wang, J. Fan, Y. Zhu, Z. Guo, J. Mater. Chem. C 7 (38), 11710-11730 (2019). DOI: https://doi.org/10.1039/c9tc03655e
[3] S. Huda, M.A. Alam, P.K. Sharma, J. Drug Deliv. Sci. Technol. 102018 (2020). DOI: https://doi.org/10.1016/j.jddst.2020.102018
[4] F. Farjadian, A.R. Akbarizadeh, L. Tayebi, Heliyon 6 (8), e04747 (2020). DOI: https://doi.org/10.1016/j.heliyon.2020.e04747
[5] M.M. Abutalib, A. Rajeh, Polym. Test. 106803 (2020). DOI: https://doi.org/10.1016/j.polymertesting.2020.106803
[6] L. Cen, K.G. Neoh, E T. Kang, Langmuir 19 (24), 10295-10303 (2003). DOI: https://doi.org/10.1021/la035104c
[7] L. Muthulakshmi, A. Varada Rajalu, G.S. Kaliaraj, S. Siengchin, J. Parameswaranpillai, R. Saraswathi, Composites Part B: Engineering, 175, 107177 (2019). DOI: https://doi.org/10.1016/j.compositesb. 2019.107177
[8] M.V. Lungu, E. Vasile, M. Lucaci, D. Pătroi, N. Mihăilescu, F. Grigore, V. Marinescu, A. Brătulescu, S. Mitrea, A. Sobetkii, A.A. Sobetkii, M. Popa, M.C. Chifiriuc, Materials Characterization 120, 69-81 (2016). DOI: https://doi.org/10.1016/j.matchar.2016.08.022
[9] Zhao, Si-Wei, Guo, Chong-Rui, Hu, Ying-Zhu, Guo, Yuan-Ru, Pan, Qing-Jiang. Open Chemistry 16 (1), 9-20 (2018). DOI: https://doi.org/10.1515/chem-2018-0006
[10] R. Saravanan, L. Ravikumar, Water Environ. Res. 89 (7), 629-640 (2017). DOI: https://doi.org/10.2175/106143016X14733681696329
[11] J. Wang, S. Yu, H. Zhang, Optik 180, 20-26 (2019). DOI: https://doi.org/10.1016/j.ijleo.2018.11.062
[12] R. Saravanan, L. Ravikumar, J. Water Resour. Prot. 7 (6), 530 (2015). DOI: https://doi.org/10.4236/jwarp.2015.76042
[13] S. Krishnaswamy, P. Panigrahi, S. Kumaar, G.S. Nagarajan, Nano- Struct. Nano-Objects 22, 100446 (2020). DOI: https://doi.org/10.1016/j.nanoso.2020.100446
[14] C. Miao, W.Y. Hamad, Curr. Opin. Solid State Mater. Sci. 23 (4), 100761 (2019). DOI: https://doi.org/10.1016/j.cossms.2019.06.005
[15] K.I. Aly, O. Younis, M.H. Mahross, O. Tsutsumi, M.G. Mohamed, M.M. Sayed, Polym. J. 51 (1), 77-90 (2019). DOI: https://doi.org/10.1038/s41428-018-0119-6
[16] K. Rojas, D. Canales, N. Amigo, L. Montoille, A. Cament, L.M. Rivas, O. Gil-Castell, P. Reyes, M.T. Ulloa, A. Ribes-Greus, Compos. Part B Eng. 172, 173-178 (2019). DOI: https://doi.org/10.1016/j.compositesb.2019.05.054
[17] S. Amjadi, S. Emaminia, S.H. Davudian, S. Pourmohammad, H. Hamishehkar, L. Roufegarinejad, Carbohydr. Polym. 216, 376- 384 (2019). DOI: https://doi.org/10.1016/j.carbpol.2019.03.062
[18] D. Bharathi, R. Ranjithkumar, B. Chandarshekar, V. Bhuvaneshwari, Int. J. Biol. Macromol. 129, 989-996 (2019). DOI: https://doi.org/10.1016/j.ijbiomac.2019.02.061
[19] K. Rajesh, V. Crasta, N.R. Kumar, G. Shetty, P.D. Rekha, J. Polym. Res. 26 (4), 99 (2019). DOI: https://doi.org/10.1007/s10965-019-1762-0
[20] Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, Y. Zhang, Nano letters, 12 (4), 1919-1922 (2012). DOI: https://doi.org/10.1021/nl204353t
[21] Z. R. Khan, M. Arif , A. Singh, International Nano Letters, 2, 22 (2012). DOI: https://doi.org/10.1186/2228-5326-2-22
[22] F. Rodríguez-Mas, J.C. Ferrer, J.L. Alonso, D. Valiente, S. Fernández de Ávila, Crystals 10 (3), 226 (2020). DOI: https://doi.org/10.3390/cryst10030226
[23] S.K. Ali, H. Wani, C. Upadhyay, K.S. Madhur, I. Khan, S. Gul, N. Jahan, F. Ali, S. Hussain, K. Azmi, Indones. Phys. Rev. 3 (3), 100-110 (2020). DOI: https://doi.org/10.29303/ipr.v3i3.64
[24] D. Ponnamma, J.-J. Cabibihan, M. Rajan, S.S. Pethaiah, K. Deshmukh, J.P. Gogoi, S.K. Pasha, M.B. Ahamed, J. Krishnegowda, B.N. Chandrashekar, Mater. Sci. Eng. C 98, 1210-1240 (2019). DOI: https://doi.org/10.1016/j.msec.2019.01.081
[25] J. Loste, J.-M. Lopez-Cuesta, L. Billon, H. Garay, M. Save, Prog. Polym. Sci. 89, 133-158 (2019). DOI: https://doi.org/10.1016/j.progpolymsci.2018.10.003
Go to article

Authors and Affiliations

R. Jagadeeswari
1
P. Selvakumar
2
ORCID: ORCID
V. Jeevanantham
2
ORCID: ORCID
R. Saravanan
1

  1. Department of Chemistry, KPR Institute of Engineering And Technology, Coimbatore-641407, Tamilnadu, India
  2. Department of Chemistry, Vivekanandha College of Arts And Sciences for Women, Tiruchengode-637205, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

Compositional and textural data are presented for zircon, secondary Zr-silicates, catapleiite and elpidite in a peralkaline granite from the Ilímaussaq complex, south Greenland. The zircon is essentially stoichiometric, with (Zr + Hf + Si) = 1.96–1.98 a.p.f.u. The secondary Zr-silicates show a wide range of Zr/Si atomic ratios (0.13–0.79). The catapleiite varies from close to stoichiometric to a Na-depleted type showing cation deficiency (5.2–5.8 a.p.f.u.). Elpidite shows similar variations (7.2–9.0 a.p.f.u.). Textural relationships between the Zr phases are interpreted to show that magmatic zircon interacted with hydrous fluids exsolved from the magma to form the secondary Zr-silicates. Formation of catapleiite was late‑magmatic, in equilibrium with a Na-Sibearing fluid. This was followed by the crystallization of elpidite, the fluid having a different Na/Si ratio. Both catapleiite and elpidite experienced Na-loss during late-stage hydrothermal alteration.
Go to article

Authors and Affiliations

Małgorzata Cegiełka
1 2
Bogusław Bagiński
1
Ray Macdonald
1 3
Harvey E. Belkin
4
Jakub Kotowski
1
Brian G.J. Upton
5

  1. Department of Geochemistry, Mineralogy and Petrology, Faculty of Geology, University of Warsaw, ul. Żwirki i Wigury 93, 02-089 Warsaw, Poland
  2. Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, ul. Twarda 51/55, 00-818 Warsaw, Poland
  3. Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
  4. 11142 Forest Edge Drive, Reston, VA 20190, USA
  5. Grant Institute, University of Edinburgh, James Hutton Rd., Edinburgh EH9 3FE, UK
Download PDF Download RIS Download Bibtex

Abstract

In the present work, Hydroxyapatite synthesis was carried out using hydrothermal method with calcium nitrate tetrahydrate (Ca(NO 3) 2.4H 2O) and fosfor pentaoksit (P 2O 5) as precursors. For the hydrothermal method, constant reaction temperature (180°C) and different reaction times (6 hours, 12 hours, 18 hours and 24 hours) were determined. The samples produced were divided into two groups. Four samples were not heat treatment; four samples were heat treatment at 700°C for 1 hour. The obtained products were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) techniques, X-ray diffraction (XRD) and UV-Vis spectrometer. SEM photos showed that the Hydroxyapatite powders produced are in the form of the agglomerate. According to EDS results, Hydroxyapatite samples are of high purity. XRD’s findings confirm that the diffraction peaks correspond to the pure phase of Hydroxyapatite. A general decrease was observed in the energy band gap of the samples with increasing hydrothermal reaction time.
Go to article

Authors and Affiliations

Nida Kati
1
ORCID: ORCID
Sermin Ozan
1
ORCID: ORCID
Tülay Yildiz
1
ORCID: ORCID
Mehmet Arslan
1
ORCID: ORCID

  1. Fırat Unıversity, Faculty of Technology, Metallurgical and Materials Engineering Department, 23200, Elazığ, Turkiye
Download PDF Download RIS Download Bibtex

Abstract

In this research work, high uniform CuFeS2 chalcopyrite with 20-40 nm particles were synthesized via a simple hydrothermal method. Different analysis were used to characterize the obtained product such as X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermal gravimetric analysis (TGA). The photocatalytic activity of the product was investigated by degradation three different dyes namely acid brown, acid red and methylene blue. The results showed the synthesized CuFeS2 nanoparticles have high photocatalytic activity and can degrade the used dyes in large quantities.

Go to article

Authors and Affiliations

Mohammad Sabet
Kamran Mahdavi
Fahimeh Salmeh
Download PDF Download RIS Download Bibtex

Abstract

Pretreatment is aimed at making lignin structures, which in turn causes decrystallisation and depolymerisation of cellulose. This treatment allows to increase the energy potential of substrates. A properly selected method allows for obtaining larger amounts of biogas with a high content of biomethane. The aim of the study was to analyse selected pretreatment methods (ultrasonic and hydrothermal) for biogas yield, including biomethane, and to demonstrate the effectiveness of obtaining additional electricity and heat from these methods. It was based on the literature data. On basis the study, the following information was obtained: average yield of biogas and biomethane before and after treatment, difference in yield of biogas and biomethane after treatment, and the effect of treatment on the substrate used. Moreover, an estimate was made of the effectiveness of obtaining additional electricity and heat from selected pretreatment methods compared to hard coal. Based on the analysis of the ultrasonic treatment analysis, it was shown that the best result was obtained with the ultrasound treatment of the mixture of wheat straw and cattle manure with the following parameters: frequency 24 kHz, temperature 44.30°C, time 21.23 s. This allowed a 49% increase in biogas production. The use of pretreatment would therefore allow the production of more electricity and heat capable of replacing conventional heat sources such as coal.
Go to article

Authors and Affiliations

Milena Piątek
1
ORCID: ORCID
Anna M. Bartkowiak
2
ORCID: ORCID

  1. International Academy of Applied Sciences in Łomża, Faculty of Agricultural Sciences and Engineering and Technology, Studencka St 19, 18-402 Łomża, Poland
  2. Institute of Technology and Life Sciences – National Research Institute, Hrabska Av. 3, Falenty, 05-090 Raszyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

Rutile-TiO2 nanorod thin films were formed on Ti disks via alkali treatment in NaOH solutions followed by heat treatment at 700°C. Ag nanoparticles were loaded on nanorods using a photo-reduction method to improve the photocatalytic properties of the prepared specimen. The surface characterization and the photo-electrochemical properties of the Ag-loaded TiO2 nanorods were investigated using a field-emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy and electrochemical impedance spectroscopy (EIS). The TiO2 nanorods obtained after the heat treatment were 80 to 180 nm thick and 1 μm long. The thickness of the nanorods increased with the NaOH concentration. The UV-Vis spectra exhibit a shift in the absorption edge of the Ag-loaded TiO2 to the visible light range and further narrowing of the bandgap. The decrease in the size of the capacitive loops in the EIS spectra showed that the Ag loading effectively improved the photocatalytic activity of the TiO2 nanorods.
Go to article

Bibliography

[1] Z. Sun, J.H. Kim, Y. Zhao, F. Bijarbooneh, V. Malgras, Y. Lee, Y.M. Kang, S.X. Dou, J. Am. Chem. Soc. 133, 19314 (2011).
[2] Z.P. Tshabalala, D.E. Motaung, H.C. Swart, Phys. B Condens. Matter. 535, 227 (2018).
[3] Y. Chen, X. Li, Z. Bi, X. He, G. Li, X. Xu, X. Gao, Appl. Surf. Sci. 440, 217 (2018).
[4] Z. Yang, B. Wang, H. Cui, H. An, Y. Pan, J. Zhai, J. Phys. Chem. C 119, 16905 (2015).
[5] Y. Ren, W. Li, Z. Cao, Y. Jiao, J. Xu, P. Liu, S. Li, X. Li, Appl. Surf. Sci. 509, 145377 (2020).
[6] B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009).
[7] G . Zhao, H. Kozuka, T. Yoko, Thin Solid Films 277, 147 (1996).
[8] J. Singh, K. Sahu, S. Choudhary, A. Bisht, S. Mohapatra, Ceram. Int. 46, 3275 (2020).
[9] S.L. Smitha, K.M. Nissamudeen, D. Philip, K.G. Gopchandran, Acta - Part A Mol. Biomol. Spectrosc. 71, 186 (2008).
[10] C. Wang, L. Yin, L. Zhang, Y. Qi, N. Lun, N. Liu, Langmuir 26, 12841 (2010).
[11] N.V. Long, P. Van Viet, L. Van Hieu, C.M. Thi, Y. Yong, M. Nogami, Adv. Sci. Eng. Med. 6, 214 (2013).
[12] M. Plodinec, A. Gajović, G. Jakša, K. Žagar, M. Čeh, J. Alloys Compd. 591, 147 (2014).
[13] D. Chen, Z. Jiang, J. Geng, Q. Wang, D. Yang, Ind. Eng. Chem. Res. 46, 2741 (2007).
Go to article

Authors and Affiliations

Kwangmin Lee
1
ORCID: ORCID
Daeheung Yoo
1 2
Ahmad Zakiyuddin
3
ORCID: ORCID

  1. Chonnam National University, School of Materials Science and Engineering, Gwangju 61186, Republic of Korea
  2. Quality Tech. Dept. Chosun Refractories Co., Ltd, Republic of Korea
  3. Universitas Indonesia, Department of Metallurgical and Materials Engineering, Depok 16425 Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The contributions of the members of the Department of Geochemistry, Mineralogy and Petrology, University of Warsaw, to the study of the chevkinite-group of minerals (CGM) are described. The range of research topics includes: (i) geochemical and mineralogical studies of natural occurrences of the group, and attempts to relate their chemical composition to host lithology; (ii) detailed analysis of the hydrothermal alteration of CGM in various settings, with the aim of understanding element redistribution and the potential implications for ore formation. An ongoing series of high P-T experiments is providing quantitative information on the pressures, temperatures and melt water conditions under which the alteration assemblages have formed. Various spectroscopic techniques are being used to determine the structure of the CGM and to identify cation distribution in the structures.
Go to article

Authors and Affiliations

Ray Macdonald
1 2
Bogusław Bagiński
1

  1. University of Warsaw, Faculty of Geology, Department of Geochemistry, Mineralogy and Petrology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  2. Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

This page uses 'cookies'. Learn more