Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Atmospheric gases and chemical impurities can be stored and chemically transformed in the tropospheric ice. Impurities are rejected during freezing of the ice to the grain boundaries, free ice surfaces or inclusions. Surface snow and tropospheric ice, however, may be exposed to high temperatures and, eventually, the gases and chemical impurities can be released into the environment. It is important to study the surface structure and transport mechanisms at temperatures near the melting point because the location of impurities and their interactions with water molecules in the ice are not yet sufficiently explained. In this work, the evolution of a scratch on the bicrystalline ice surface was studied at −5 ℃. The surface transport mechanisms near the melting point were studied and, as a consequence, the surface structure could be determined. An ice sample was kept immersed in ultra-pure silicone oil to prevent evaporation and, thus, isolate the effect of surface diffusion. The ice sample was made with water with chemical conditions similar to the water of polar ice sheets. Photographs of the scratch were taken periodically, for approximately 50 hours, using a photographic camera coupled to an optical microscope. From these images, the evolution of the width of the scratch was studied and the surface diffusion was the dominant transport mechanism in the experiment. Finally, the ice surface self-diffusion coefficient at −5 ℃ was determined and it was very similar to the super-cooled water diffusion coefficient. A liquid-like behavior of ice surfaces near the melting point was found and it could have a strong influence on the reaction rates with atmospheric gases.
Go to article

Bibliography

ABRÀMOFF M.D., MAGALHÃES P.J. and RAM S.J. 2004. I processing with Image J. Biophotonics International 11: 36–42.

ASAKAWA H., SAZAKIG., NAGASHIMA K., NAKATSUBO S. and FURUKAWA Y. 2016. Two types of quasi-liquid layers on ice crystals are formed kinetically. Proceedings of the National Academy of Sciences 113: 1749–1753.

BARLETTA R.E., PRISCU J.C., MADER H.M., JONES W.L. and ROE C.H. 2012. Chemical analysis of ice vein microenvironments: II. Analysis of glacial samples from Greenland and Antarctica. Journal of Glaciology 58: 1109–1118.

BAR-NUN A., DROR J., KOCHAVI E. and LAUFER D. 1987. Amorphous water ice and its ability to trap gases. Physical Review B 35: 2427.

BARTELS-RAUSCH T., WREN S.N., SCHREIBER S., RICHE F., SCHNEEBELI M. and AMMANN M. 2013. Diffusion of volatile organics through porous now: impact of surface adsorption and grain boundaries. Atmospheric Chemistry and Physics 13: 6727–6739.

BARTELS-RAUSCH T., JACOBI H.W., KAHAN T.F., THOMAS J.L., THOMSON E.S., ABBATT J.P., AMMANN M., BLACKFORD J.R., BLUHM H., BOXE C. and DOMINÉ F. 2014. A review of air– ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. Atmospheric Chemistry and Physics 14: 1587–633.

DASH J.G., REMPEL A.W. and WETTLAUFER J.S. 2006. The physics of premelted ice and its geophysical consequences. Reviews of Modern Physics 78: 695.

DI PRINZIO C.L. and NASELLO O.B. 1997. Study of grain boundary motion in ice bicrystals. The Journal of Physical Chemistry 39: 7687–7690.

DI PRINZIO C.L. and PEREYRA R.G. 2016. Molecular dynamics simulations of tilt grain boundaries in ice. Modelling and Simulation in Materials Science and Engineering 24: 045015.

DRUETTA E., NASELLO O.B. and DI PRINZIO C.L. 2013. Experimental Determination of<1010>/Ψ Tilt Grain Boundary Energies in Ice. Journal of Materials Science Research 3: 71–76.

DURAND G., WEISS J., LIPENKOV V., BARNOLA J.M., KRINNER G., PARRENIN F., DELMONTE B., RITZ C., DUVAL P., RÖTHLISBERGER R. and BIGLER M. 2006. Effect of impurities on grain growth in cold ice sheets. Journal of Geophysical Research: Earth Surface 111: F01015.

GRUBER E.E. and MULLINS W.W. 1966. Extended Analysis of Surface Scratch Smoothing. Acta Metallugica 14: 397–403.

GU Y. 2001. Experimental determination of the Hamaker constants for solid–water–oil systems. Journal of Adhesion Science and Technology 15: 1263–1283. GUEVARA-CARRION G., VRABEC J. and HASSE H. 2011. Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulation. The Journal of Chemicalphysics 134: 074508.

HALLET J. 1963. The temperature dependence of the viscosity of supercooledwater. Proceedings of the Physical Society 82: 1046.

HIGUCHI K. 1957. A new method for recording the grain-structure of ice. Journal of Glaciology 3: 131–132.

HOBBS P.V. 2010. Ice Physics. Oxford University Press, Oxford.

KING R.T. and MULLINS W.W. 1962. Theory of the decay of a surface scratch to flatness. Acta Metallurgica 10: 601–606.

KRAUSKO J., RUNSTUK J., NEDěLA V., KLáN P. and HEGER D. 2014. Observation of a brine layer on an ice surface with an environmental scanning electron microscope at higher pressures and temperatures. Langmuir 30: 5441–5447.

MULLINS W.W. 1957. Theory of Thermal Grooving. Journal of Applied Physics 28: 333–339.

MULLINS W.W. 1959. Flattening of a nearly plane solid surface due to capillarity. Journal of Applied Physics 30: 77–83.

MULLINS W.W. 1960. Grain boundary grooving by volume diffusion. Transactions of the American Institute of Mining and Metallurgical Engineers 218: 354–361.

NASELLO O.B. 1982. Estudio de las primeras etapas del proceso de acreción, PhD Thesis, Universidad Nacional de Córdoba, Córdoba (unpublished).

NASELLO O.B. and DI PRINZIO C.L. 2011. Anomalous effects of hydrostatic pressure on ice surface self-diffusion. Surface Science 605: 1103–1105.

NASELLO O.B., DI PRINZIO C.L. and LEVI L. 1992. Grain boundary Migration in Bicrystals of Ice. In: Maeno N. and Hondoh T. (eds) Physics and Chemistry of Ice, Hokkaido University Press, Sapporo, Japan.

NASELLO O.B., DI PRINZIO C.L. and GUZMÁN P.G. 2007. Grain boundary properties of ice doped with small concentrations of potassium chloride (KCl). Journal of Physics: Condensed Matter 19: 246218.

PALAIS J.M. and LEGRAND M. 1985. Soluble impurities in the Byrd Station ice core, Antarctica: their origin and sources. Journal of Geophysical Research: Oceans 90: 1143–1154.

PRUPPACHER H.R. and KLETT J.D. 2010. Microstructure of atmospheric clouds and precipitation. In Microphysics of Clouds and Precipitation. Springer, Dordrecht.

RAYNAUD D., JOUZEL J., BARNOLA J.M., CHAPPELLAZ J., DELMAS R.J. and LORIUS C. 1993. The ice record of greenhouse gases. Science 259: 926–934.

STYLE W. and GRAE WORSTER M. 2005. Surface Transport in Premelted Films with Application to Grain-Boundary Grooving. Physical Review Letters 95: 176102.

WETTLAUFER J.S. 1999. Impurity effects in the premelting of ice. Physical Review Letters 82: 2516.

WETTLAUFER J.S. and GRAE WORSTER M. 2006. Premelting dynamics. Annual Review of Fluid Mechanics 38: 427–452.

Go to article

Authors and Affiliations

Guillermo Aguirre Varela
1 2
ORCID: ORCID
Carlos L. Di Prinzio
1 2
ORCID: ORCID
Damián Stoler
1
ORCID: ORCID

  1. FAMAF, Universidad Nacional de Córdoba, Medina Allende and Haya de la Torre, 5000 Ciudad Universitaria, Córdoba, Argentina
  2. IFEG-CONICET, Universidad Nacional de Córdoba, Medina Allende and Haya de la Torre, 5000 Ciudad Universitaria, Córdoba, Argentina

This page uses 'cookies'. Learn more