Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, flow systems which are commonly used in fittings elements such as contractions in ice slurry pipelines, are experimentally investigated. In the study reported in this paper, the consideration was given to the specific features of the ice slurry flow in which the flow behaviour depends mainly on the volume fraction of solid particles. The results of the experimental studies on the flow resistance, presented herein, enabled to determine the loss coefficient during the ice slurry flow through the sudden pipe contraction. The mass fraction of solid particles in the slurry ranged from 5 to 30%. The experimental studies were conducted on a few variants of the most common contractions of copper pipes: 28/22 mm, 28/18 mm, 28/15 mm, 22/18 mm, 22/15 mm and 18/15 mm. The recommended (with respect to minimal flow resistance) range of the Reynolds number (Re about 3000-4000) for the ice slurry flow through sudden contractions was presented in this paper.

Go to article

Authors and Affiliations

Łukasz Mika
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of experimental research of pressure drop and heat transfer coefficients of ice slurry during its flow through tubes of rectangular and slit cross-sections. Moreover, the work discusses the influence of solid particles, type of motion and cross-section on the changes in the pressure drop and heat transfer coefficient. The analysis presented in the paper allows for identification of the criterial relations used to calculate the Fanning factor and the Nusselt number for laminar and turbulent flow, taking into account elements such as phase change, which accompanies the heat transfer process. Ice slurry flow is treated as a generalized flow of a non-Newtonian fluid.
Go to article

Authors and Affiliations

Beata Niezgoda-Żelasko
Jerzy Żelasko

This page uses 'cookies'. Learn more