Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to assess the feasibility of utilizing sodium alginate biopolymer as animmobilization carrier for laccase in the removal of indigo carmine (IC), an anionic dye. The main goal of this work was to optimize the decolourization process by selecting the appropriate immobilized enzyme dose per 1 mg of dye, as well as the process temperature. The effective immobilization of laccase using sodium alginate as a carrier was confirmed by Raman spectroscopy. An analysis of the size and geometric parameters of the alginate beads was also carried out. Tests of IC decolourization using alginate-laccase beads were conducted. Applying the most effective dose of the enzyme (320 mg of enzyme/1 mg of IC) made it possible to remove 92.5% of the dye over 40 days. The optimal temperature for the IC decolourization process, using laccase immobilized on sodium alginate, was established at 30-40ºC. The obtained results indicate that laccase from Trametes versicolor immobilized on sodium alginate was capable of decolourizing the tested dye primarily based on mechanism of biocatalysis.
Go to article

Bibliography

  1. Achieng, G.O., Kowenje, Ch.O., Lalah, J.O. & Ojwach S.O. (2019). Preparation, characterization of fish scales biochar and their applications in the removal of anionic indigo carmine dye from aqueous solutions, Water Science & Technology, 80, 11, pp. 2218-2231. DOI:10.2166/wst.2020.040.
  2. Ahlawat, A., Jaswal, A.S. & Mishra, S. (2022). Proposed pathway of degradation of indigo carmine and its co-metabolism by white-rot fungus Cyathus bulleri, International Biodeterioration & Biodegradation, 172, 3, 105424. DOI:10.1016/j.ibiod.2022.105424.
  3. Almulaiky, Y.Q. & Al Harbi, S.A. (2022). Preparation of a calcium alginate coated polypyrrole/silver nanocomposite for site specific immobilization of polygalacturonase with high reusability and enhanced stability, Catalysis Letters, 152, pp. 28-42. DOI:10.1007/s10562-021-03631-7.
  4. Alvarado-Ramírez, L., Rostro-Alanis, M., Rodríguez-Rodríguez, J., Castillo-Zacarías, C., Sosa-Hernández, J.E., Barceló, D., Iqbal, H.M.N. & Parra-Saldívar R. (2021). Exploring current tendencies in techniques and materials for immobilization of laccases – A review, International Journal of Biological Macromolecules, 181, pp. 683–696. DOI:10.1016/j.ijbiomac.2021.03.175.
  5. Bhowmik, S., Chakraborty, V. & Das, P. (2021). Batch adsorption of indigo carmine on activated carbon prepared from sawdust: a comparative study and optimization of operating conditions using Response Surface Methodology, Results in Surfaces and Interfaces, 3, 100011. DOI:10.1016/j.rsurfi.2021.100011.
  6. Bilal, M., Rasheed, T., Nabeel, F. & Iqbal, H.M.N. (2019). Hazardous contaminants in the environment and their laccase-assisted degradation – A review, Journal of Environmental Management, 234, pp. 253-264. DOI:10.1016/j.jenvman.2019.01.001.
  7. Ching, S.H., Bansal, N. & Bhandari, B. (2017). Alginate gel particles–A review of production techniques and physical properties, Critical Reviews in Food Science and Nutrition, 57, pp. 1133–1152. DOI:10.1080/10408398.2014.965773.
  8. Daâssi, D., Mechichi, T., Nasri, M. & Rodriguez-Couto, S. (2013). Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi, Journal of Environmental Management, 129, pp. 324-332. DOI:10.1016/j.jenvman.2013.07.026.
  9. Deska, M. & Kończak, B. (2020). Operational stability of laccases under immobilization conditions, Przemysł Chemiczny, 99, 3, pp. 472-476. DOI:10.15199/62.2020.3.22. (in Polish)
  10. Deska, M. & Kończak, B. (2022a). Support materials for laccase immobilization for decolourization processes, Przemysł Chemiczny, 101, 2, pp. 135-139. DOI:10.15199/62.2022.2.9. (in Polish)
  11. Deska, M. & Kończak, B. (2022b). Laccase Immobilization on Biopolymer Carriers – Preliminary Studies, Journal of Ecological Engineering, 23, 3, pp. 235–249. DOI:10.12911/22998993/146611.
  12. Deska, M. & Kończak, B., (2019). Immobilized fungal laccase as "green catalyst" for the decolourization process – State of the art, Process Biochemistry, 84, pp. 112-123. DOI:10.1016/j.procbio.2019.05.024.
  13. Deska, M. & Zawadzki, P. (2021). Novel methods of removing synthetic dyes from industrial wastewater, Przemysł Chemiczny, 100, 7, pp. 664-667. DOI:10.15199/62.2021.7.5 (in Polish).
  14. Hevira, L., Rahmayeni, Z., Ighalo, J.O. & Zein R. (2020). Biosorption of indigo carmine from aqueous solution by Terminalia Catappa shell, Journal of Environmental Chemical Engineering, 8, 104290. DOI:10.1016/j.jece.2020.104290.
  15. Holkar, C.R., Jadhav, A.J., Pinjari, D.V., Mahamuni, N.M. & Pandit, A.B. (2016). A critical review on textile wastewater treatments: Possible approaches, Journal of Environmental Management, 182, pp. 351–366. DOI:10.1016/j.jenvman.2016.07.090.
  16. Hurtado, A., Aljabali, A.A.A., Mishra, V.; Tambuwala, M.M. & Serrano-Aroca, Á. (2022). Alginate: Enhancement Strategies for Advanced Applications, International Journal of Molecular Sciences, 23, 4486, DOI:10.3390/ijms23094486.
  17. Kandelbauer, A., Kessler, W. & Kessler, R.W. (2008). Online UV-visible spectroscopy and multivariate curve resolution as powerful tool for model-free investigation of laccase-catalysed oxidation, Analytical and Bioanalytical Chemistry, 390, 5, pp. 1303–1315. DOI:10.1007/s00216-007-1791-0.
  18. Kishor, R., Purchase, D., Saratale, G.D., Saratale, R.G., Ferreira, L.F.R., Bilal, M., Chandra, R. & Bharagava, R.N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety, Journal of Environmental Chemical Engineering, 9, 2, 105012. DOI:10.1016/j.jece.2020.105012.
  19. Klis, M., Maicka, E., Michota, A., Bukowska, J., Sek, S., Rogalski, J. & Bilewicz R. (2007). Electroreduction of laccase covalently bound to organothiol monolayers on gold electrodes, Electrochimica Acta, 52, 18, pp. 5591–5598. DOI:10.1016/j.electacta.2007.02.008.
  20. Krzyczmonik, P., Klisowska, M., Leniart, A., Ranoszek-Soliwoda, K., Surmacki, J., Beton-Mysur, K. & Brożek-Płuska. B. (2023). The Composite Material of (PEDOT-Polystyrene Sulfonate)/Chitosan-AuNPS-Glutaraldehyde/as the Base to a Sensor with Laccase for the Determination of Polyphenols, Materials, 16, 14, pp. 5113. DOI:10.3390/ma16145113.
  21. Kuśmierek, K., Dąbek, L. & Świątkowski A. (2023). Removal of Direct Orange 26 azo dye from water using natural carbonaceous materials, Archives of Environmental Protection, 49, 1, pp. 47-56, DOI:10.24425/aep.2023.144736.
  22. Marszałek, A. (2022). Encapsulation of halloysite with sodium alginate and application in the adsorption of copper from rainwater, Archives of Environmental Protection, 48, 1, pp. 75-82, DOI:10.24425/aep.2022.140546.
  23. Lassouane, F., Aït-Amar, H., Amrani, S. & Rodriguez-Couto, S. (2019). A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions, Bioresource Technology, 271, pp. 360-367. DOI:10.1016/j.biortech.2018.09.129.
  24. Leonties, A.R., Răducan, A., Culiță, D.C., Alexandrescu, E., Moroșan, A., Mihaiescu, D.E. & Aricov, L. (2022). Laccase immobilized on chitosan-polyacrylic acid microspheres as highly efficient biocatalyst for naphthol green B and indigo carmine degradation, Chemical Engineering Journal, 439, 135654. DOI:10.1016/j.cej.2022.135654.
  25. Mohan, Ch., Yadav, S., Uniyal, V., Takaeva, N. & Kumari, N. (2022). Interaction of Indigo carmine with naturally occurring clay minerals: An approach for the synthesis of nanopigments, Materials Today: Proceedings, 69, 2, pp. 82-86. DOI:10.1016/j.matpr.2022.08.081.
  26. Neha, A., Vijendra, S.S., Amel, G., Mohd, A.H., Brijesh, P., Amrita, S., Anupama, S., Virendra, K.Y., Krishna, K.Y., Chaigoo, L., Wonjae, L., Sumate, Ch. & Byong-Hun, J. (2022). Bacterial Laccases as Biocatalysts for the Remediation of Environmental Toxic Pollutants: A Green and Eco-Friendly Approach - A Review, Water, 14, 24, 4068. DOI:10.3390/w14244068.
  27. Niladevi, K. & Prema, P. (2007). Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor, World Journal of Microbiology and Biotechnology, 24, pp. 1215-1222. DOI:10.1007/s11274-007-9598-x.
  28. Olajuyigbe, F.M., Adetuyi, O.Y. & Fatokun, C.O. (2018). Characterization of free and immobilized laccase from Cyberlindera fabianii and application in degradation of bisfenol A, International Journal of Biological Macromolecules, 125, pp. 856-864. DOI:10.1016/j.ijbiomac.2018.12.106.
  29. Rane, A. & Joshi, S.J. (2021). Biodecolorization and Biodegradation of Dyes: A Review, The Open Biotechnology Journal, 15, Suppl-1, M4, pp. 97-108. DOI:10.2174/1874070702115010097.
  30. Rodriguez-Couto, S. & Herrera, J.L.T. (2006). Industrial and biotechnological applications of laccases: a review, Biotechnology Advances, 24, 5, pp. 500-513. DOI:10.1016/j.biotechadv.2006.04.003.
  31. Saoudi, O. & Ghaouar, N. (2019). Biocatylytic characterization of free and immobilized laccase from Trametes versicolor in its activation zone, International Journal of Biological Macromolecules, 128, pp.681-691. DOI:10.1016/j.ijbiomac.2019.01.199.
  32. Shokri, Z., Seidi, F., Karami, S., Li, Ch., Saeb, M.R. & Xiao, H. (2021). Laccase immobilization onto natural polysaccharides for biosensing and biodegradation, Carbohydrate Polymers, 262, 117963. DOI:10.1016/j.carbpol.2021.117963.
  33. Teerapatsakul, Ch., Parra, R., Keshavarz, T. & Chitradon, L. (2017). Repeated batch for dye degradation in an airlift bioreactor by laccase entrapped in copper alginate, International Biodeterioration & Biodegradation, 120, pp. 52-57. DOI:10.1016/j.ibiod.2017.02.001.
  34. Tyagi, N., Gambhir, K., Pandey, R., Gangenahalli, G. & Verma, Y.K. (2021) Minimizing the negative charge of Alginate facilitates the delivery of negatively charged molecules inside cells, Journal of Polymer Research, 29, 1. DOI:10.1007/s10965-021-02813-6
  35. Vautier, M., Guillard, C. & Herrmann, J.M. (2001). Photocatalytic degradation of dyes in water: Case study of indigo and of indigo carmine, Journal of Catalysis, 201, pp. 46-59. DOI:10.1006/jcat.2001.3232.
  36. Wang, J.; Lu, L. & Feng, F. (2017). Improving the Indigo Carmine Decolorization Ability of a Bacillus amyloliquefaciens Laccase by Site-Directed Mutagenesis, Catalysts, 7, 275. DOI:10.3390/catal7090275.
  37. Zdarta, J., Meyer, A.S., Jesionowski, T. & Pinelo, M. (2018). Developments in support materials for immobilization of oxidoreductases: A comprehensive review, Advances in Colloid and Interface Science, 258, pp.1-20. DOI:10.1016/j.cis.2018.07.004.
  38. Zein, R., Hevira, L., Zilfa, Rahmayeni, Fauzia, S. & Ighalo J.O. (2022). The Improvement of Indigo Carmine Dye Adsorption by Terminalia catappa Shell Modified with Broiler Egg White, Biomass Conversion and Biorefinery, 13, pp. 13795-13812. DOI:10.1007/s13399-021-02290-3.
  39. Zhou, W., Zhang, W. & Cai, Y. (2021). Laccase immobilization for water purification: A comprehensive review, Chemical Engineering Journal, 403, 126272. DOI:10.1016/j.cej.2020.126272.
Go to article

Authors and Affiliations

Małgorzata Białowąs
1
ORCID: ORCID
Beata Kończak
1
Stanisław Chałupnik
1
Joanna Kalka
2
Magdalena Cempa
1
ORCID: ORCID

  1. Central Mining Institute – National Research Institute, Katowice, Poland
  2. Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering,The Silesian University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

In Poland, in recent years, there has been a rapid accumulation of sewage sludge – a by-product in the treatment of urban wastewater. This has come about as a result of infrastructure renewal, specifically, the construction of modern sewage treatment plants. The more stringent regulations and strategic goals adopted for modern sewage management have necessitated the application of modern engineering methodology for the disposal of sewage sludge. One approach is incineration. As a consequence, the amount of fly ash resulting from the thermal treatment of municipal sewage sludge has grown significantly. Hence, intensive work is in progress for environmentally safe management of this type of waste. The aim of the experiment was to evaluate the possibility of using the fly ash that results from municipal sewage sludge thermal treatment (SSTT) as an additive to hardening slurries. The article presents the technological and functional parameters of hardening slurries with an addition of fly ash obtained by SSTT. Moreover, the usefulness of these slurries is analyzed on the basis of their basic properties, i.e., density, contractual viscosity, water separation, structural strength, volumetric density, hydraulic conductivity, compressive and tensile strength. The research on technological and functional properties was carried out, the aim of which was to determine the practical usefulness of the hardening slurries used in the experiment. Subsequently, leaching tests were performed for heavy metals in the components, the structure of the hardening slurries. An experiment showed leaching of hazardous compounds at a level allowing their practical application. The article presents the potential uses of fly ash from SSTT in hardening slurry technology.
Go to article

Bibliography

  1. Asavapisit, S., Naksrichum, S. & Harnwajanawong, N. (2005). Strength, lechability, and microstructure characteristics of cement-based solidified plating sludge. Cement and Concrete Research 35, pp. 1042–1049.
  2. Batchelor, B. (2006). Overview of waste stabilization with cement. Waste Management 26, pp. 689–698.
  3. Bobrowski, A., Gawlicki, M. & Małolepszy, J. (1997). Analytical Evaluation of Immobilization of Heavy Metals in Cement Matrices, Environmental Science & Technology, 31, 3, pp. 745-749.
  4. Chang, F.C., Lin, J.D., Tsai, C.C. & Wang, K.S. (2010). Study on cement mortar and concrete made with sewage sludge ash. Water Science and Technology, 62, 7, pp. 1689-1693, 2010.
  5. Chiang, K. Y., Chou, P. H., Hua, C. R., Chien, K. L. & Cheeseman, C. (2009). Lightweight bricks manufactured from water treatment sludge and rice husks. Journal of hazardous materials. 171 (1-3), pp. 76-82.
  6. Chou, J.-D., Wey, M.-Y. & Chang, S.-H. (2009). Evaluation of the distribution patterns of Pb, Cu and Cd from MSWI fly ash during thermal treatment by sequential extraction procedure. Journal of Hazardous Materials 162 (2–3), pp. 1000–1006.
  7. Elicker, C., Sanches Filho P.J. & Castagno K.R.L. (2014). Electroremediation of heavy metals in sewage sludge. Braz. J. Chem. Eng. Sao Paulo, 31(2), pp. 365–371.
  8. EN 450-1:2012. (2012). Fly ash for concrete. Definition, specifications and conformity criteria.
  9. Falaciński, P. (2012). Possible applications of hardening slurries with fluidal fly ashes in environment protection structures. Archives of Environmental Protection. 38, 3, pp. 91-104. DOI: 10.2478/v10265-012-0031-7.
  10. Falaciński, P. & Szarek, Ł. (2016).Possible Applications of Hardening Slurries with Fly Ash from Thermal Treatment of Municipal Sewage Sludge in Environmental Protection Structures. Archives of Hydro-Engineering and Environmental Mechanics, 63, 1, pp. 47–61. DOI: 10.1515/heem-2016-0004
  11. Gawdzik, J. & Latosińska, J. (2014). Assessment of sewage sludge incineration fly-ash heavy metal immobilization. Engineering and Protection of Environment, t. 17, vol. 3, pp. 415-421.
  12. Guo, B., Liu, B., Yang, J. & Zhang, S. (2017).The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. Journal of environmental management, 193, pp. 410-422.
  13. Hoi, K. L., Barford, J.P. & Makay, G. (2010). Utylization of Incineration Waste Ash Residues in Portland Cement Clinker, Chemical Engineering Transaction, 21, pp. 757-762.
  14. Ibragimow, A., Głosińska, G., Siepak, M. & Walna, B. (2010). Preliminary studies of heavy metal pollution in floodplain sediments. Works and Geographic Studies 44, pp. 233–247.
  15. Jakob, A., Stucki ,S. & Kuhn, P. (1995). Evaporation of heavy metals during the heat treatment of municipal solid waste fly ash. Environmental Science and Technology 29, pp. 2429–2436.
  16. Jama-Rodzeńska, A., Bocianowski, J. & Nowak, W. (2014). Impact of municipal sewage sludge on heavy metal content in the sprouts of Salix viminalis L. clones. ZPPNR 576, pp. 45–56. (in Polish)
  17. Kledynski, Z. & Rafalski, L. (2009). Hardening slurries, Warszawa, KILiW PAN, IPPT PAN.(in Polish)
  18. Le Forestier, L. & Libourel, G. (2008). High temperature behavior of electrostatic precipitator ash from municipal solid waste combustors. Journal of Hazardous Materials 154 (1–3) pp. 373–380.
  19. Li, Z. & Shuman, L.M. (1996). Redistribution of forms of zinc, cadmium and nickel in soils treated with EDTA. Sci Total Environ 191, pp. 95–107.
  20. Łukawska, M. (2014). Speciation analysis of phosphorous in sewage sludge after thermal incineration. Inżynieria i Ochrona Środowiska, 17 (3), pp. 433-439 (in Polish)..
  21. Marcinkowski, T. (2004). Alkaline stabilization of municipal sewage sludges. Scientific Papers of the Institute of Environment Protection Engineering of the Wroclaw University of Technology No. 76, Poland.
  22. Nowaka, B., Rochaa, S.F., Aschenbrennerb, F., Rechbergerb, H. & Wintera, F. (2012). Heavy metal removal from MSW fly ash by means of chlorination and thermal treatment: Influence of the chloride type. Chemical Engineering Journal 179 pp. 178– 185.
  23. Petruzzelli, G., Szymura, I., Lubrano,L. & Pezzarossa, B. (1989). Chemical speciation of heavy metals in different size fractions of compost from solid urban wastes. Environetal Technology Letter. 10, pp. 521 – 526.
  24. Polowczyk, I., Bastrzyk, A., Sawiński, W., Koźlecki, T., Rudnicki, P., Sadowski, Z. & Sokołowski, A. (2010). Sorption properties of fly ash from coal burning. Chemical Engineering and Apparatus, 49(1), pp. 93–94.
  25. Poluszyńska. J. & Ślęzak, E. (2015). Characteristics of biomass incineration ashes and the assessment of their possible use for natural purposes. Scientific Works of Institute of Ceramics and Building Materials. 23, pp. 71-78.
  26. Renbo, Y., Wing-Ping, L. & Pin-Han, W. (2012). Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan, Journal of Environmental Management, 104, pp. 67-76.
  27. Rodríguez, N. H., Ramírez, S. M., Varela, M. B., Guillem, M., Puig, J., Larrotcha, E. & Flores, J. (2010). Re-use of drinking water treatment plant (DWTP) sludge: characterization and technological behaviour of cement mortars with atomized sludge additions. Cement and Concrete Research, 40(5), pp. 778-786.
  28. Rosik-Dulewska, Cz. (2001). The content of fertilizer ingredients and heavy metals with their fractions in municiapl waste composts. Problem Journals of Advances in Agricultural Sciences 477, pp. 467-477.
  29. Sánchez-Chardi, A. (2016). Biomonitoring potential of five sympatric Tillandsia species for evaluating urban metal pollution (Cd, Hg and Pb). Atmospheric Environment, 131, pp. 352-359.
  30. Sørum, L., Frandsen-Flemming, J. & Hustad, J. E. (2008). On the fate of heavy metals in municipal solid waste combustion part I: devolatilisation of heavy metals on the grate. Fuel, 82 (18) pp. 2273–2283.
  31. Struis, R.P.W., Ludwig, C., Lutz, H. & Scheidegger A.M. (2004). Speciation of zinc in municipal solid waste incinerator fly ash after heat treatment: an X-ray absorption spectroscopy study. Environmental Science and Technology, 38, pp. 3760–3767.
  32. Szarek, Ł. (2020). Leaching of heavy metals from thermal treatment municipal sewage sludge fly ashes. Archives of Environmental Protection, 46, 3, pp. 49-59, DOI:10.24425/aep.2020.134535.
  33. Szarek, Ł., Falaciński P. & Wojtkowska, M. (2018). Immobilization of selected heavy metals from fly ash from thermal treatment of municipal sewage sludge in hardening slurries, Archives of Civil Engineering, 64, 3, pp.131-144. DOI:10.2478/ace-2018-0034.
  34. Szarek, Ł. & Wojtkowska, M. (2018). Properties of fl y ash from thermal treatment of municipal sewage sludge in terms of EN 450-1. Archives of Environmental Protection 44, 1, pp. 63–69. DOI:10.24425/118182.
  35. Teixeira, S. R., Santos, G. T. A., Souza, A. E., Alessio, P., Souza, S. A. & Souza, N. R. (2011). The effect of incorporation of a Brazilian water treatment plant sludge on the properties of ceramic materials. Applied Clay Science, 53(4), pp. 561-565.
  36. Ure, A.M., Davidson, C.M. & Thomas, R.P. (1995). Single and sequential extraction schemes for tracę metal speciation in soil and sediment, Techniąues and Instruinentation in Analytical Chemistry, 17, pp. 505-523.
  37. Vassilev, S., Baxter, D., Andersen, L. & Vassileva, C. (2013a). An overview of the composition and application of biomass ash. Part 1.Phase–mineral and chemical composition and classification. Fuel, 105, pp. 40–76.
  38. Vassilev, S., Baxter, D., Andersen, L. & Vassileva, C. (2013b). An overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel, 105, pp. 19-39.
  39. Wojtkowska, M. & Bogacki, J. (2012). Use of Speciation Analysis for Monitoring Heavy Metals in the Bottom Sediments of the Utrata River‎, Environmental Protection, 34, 4, pp. 43-46.
  40. Woodard, C. (2006). Industrial Waste Treatment Handbook. Second Edition, Elselvier, USA.
  41. Wzorek, Z. (2008). Recovery of phosphorous compounds from thermally processed waste and their application as a substitute for natural phosphorous raw materials. Kraków, Publishing House of the Cracow University of Technology.
Go to article

Authors and Affiliations

Paweł Falaciński
1
ORCID: ORCID
Małgorzata Wojtkowska
1

  1. Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw
Download PDF Download RIS Download Bibtex

Abstract

Geopolymers are a new class of materials that can be synthesized using natural minerals, and waste materials. Among these substrates, the use of fly ash is desirable as it involves the conversion of a copious waste material into a useful product. The aim of the research was geopolymers synthesis from coal fly ash and biomass ash. Concentrated sodium hydroxide and sodium silicate solutions were used as activators in geopolymerisation reaction. The results show that both coal fly ash and biomass ash can be utilized as source materials for the production of geopolymers. The surface morphology and chemical composition analysis were examined for the obtained geopolymers and ashes from coal and biomass combustion by SEM-EDS methods. It was found almost total disappearance of spherical forms of grains and reduction the porosity of structure for geopolymer based on fly ash from coal combustion. While the structure of the geopolymer based ash from biomass combustion is more porous. The UV-VIS-NIR spectra were performed on the coal fly ash, biomass ash and geopolymers. They showed that the obtained geopolymers possess optical and photocatalytic properties. The similarity of the geopolymer network and the zeolite framework in relation to ion exchange and accommodation of metal ions open questions on possibilities for the application of geopolymer materials as amorphous analogues of zeolite. The FT-IR spectra analyses were used on the geopolymers before and after metals sorption. It was found that geopolymer based on ash from biomass combustion has better sorption properties compared to geopolymer based on ash from coal combustion.

Go to article

Authors and Affiliations

Elżbieta Sitarz-Palczak
Jan Kalembkiewicz
Dagmara Galas
Download PDF Download RIS Download Bibtex

Abstract

Celem pracy było określenie wpływu hydraulicznego czasu zatrzymania (H RT) i wydajności cyrkulacji wewnętrznej (Gel na różnorodność mikroorganizmów w biomasie unieruchomionej w porowatym nośniku ceramicznym. Bioreaktor, wykorzystywany do usuwania związków organicznych ze ścieków komunalnych, był eksploatowany przy HRT 70 i 60 min oraz qc w zakresie 20-70 drn"h'. Różnorodność mikroorganizmów była określana na podstawie wzorów RISA przy użyciu indeksu Shannona-Wienera (1-1'). Przy HRT równym 70 min, H' obniżył się z 2,48 ± 0,14 do 2,13 ± 0,23 ze wzrostem Ge z 20 do 60 drn+h'. Przy HRT 60 min. zwiększenie qc z 40 do 70 drnvh' spowodowało spadek 1-1' z 2,41 ± O, 13 do 2,08 ± O, 19. Przy każdej wartości HRT, najwyższą efektywność usuwania związków organicznych uzyskano przy najniższej wartości qc i najwyższej bioróżnorodności.
Go to article

Authors and Affiliations

Magdalena Zielińska
Agnieszka Cydzik-Kwiatkowska
Irena Wojnowska-Baryła
Download PDF Download RIS Download Bibtex

Abstract

The decolourization of Turquoise Blue HFG by immobilized cells of Lysinibacillus fusiformis B26 was investigated. Cells of L. fusiformis B26 were immobilized by entrapment in agar and calcium alginate matrices and attached in pumice particles. The effects of operational conditions (e.g., agar concentrations, cell concentrations, temperature, and inoculum amount) on microbial decolourization by immobilized cells were investigated. The results revealed that alginate was proven to be the best as exhibiting maximum decolourization (69.62%), followed by agar (55.55%) at 40°C. Pumice particles were the poorest. Optimum conditions for agar matrix were found: concentration was 3%, cell amount was 0.5 g and temperature was 40°C (55.55%). Ca-alginate beads were loaded with 0.5, 1.0 and 2.0 g of wet cell pellets and the highest colour removal activity was observed with 2.0 g of cell pellet at 40°C for alginate beads. Also, 0.5 and 1.0 g of pumice particles that were loaded with 0.25 and 0.5 g of cell pellets respectively were used and the results were found very similar to each other.

Go to article

Authors and Affiliations

Nazime Mercan Dogan
Tugba Sensoy
Gulumser Acar Doganli
Naime Nur Bozbeyoglu
Dicle Arar
Hatice Ardag Akdogan
Merve Canpolat
Download PDF Download RIS Download Bibtex

Abstract

Two different porous ceramic carriers with immobilized activated sludge comprised a stationary filling of the reactors. Municipal wastewater was treated at hydraulic retention times from 15 to 70 min and internal circulation capacity of 20, 40 and 60 drn':h'. Depending on hydraulic retention time, the sludge yield ranged from 0.138 to 0.066 g TSS·g COD·' in reactor I and from 0.175 to 0.107 g TSS·g COD·' in reactor li. An increase in volumetric loading rate and internal circulation capacity caused a reduction in sludge yield. A decrease in the sludge yield corresponded to an increase in the ratio of endogenous to substrate respiration by the immobilized biomass
Go to article

Authors and Affiliations

Magdalena Zielińska
Irena Wojnowska-Baryła
Download PDF Download RIS Download Bibtex

Abstract

The present study is aimed to access the growth rates, biomass productivity and nutrient removal in different concentrations of microalgae Botryococcus sp. beads using kitchen wastewater as a media. Verhulst logistic kinetic model was used to measure the optimal concentrations of microalgae Botryococcus sp. in kitchen wastewater in terms of cell growth rate kinetics and biomass productivity. The study verified that the maximum productivity was recorded with 1×106 cell/ml of the initial concentration of Botryococcus sp. with 42.64 mg/l/day and the highest removal of tp and ammonia was obtained (78.14% and 60.53% respectively). The highest specific growth rate of biomass at 0.2896 μmax/d compare to other concentrations, while the lowest occurred at concentrations of 105 cells/ml at 0.0412 μmax/d. The present study shows the different concentrations of Botryococcus sp. in alginate beads culturing in kitchen wastewater influence the cells growth of biomass and nutrient uptake with optimum concentration (106 cells/ml) of Botryococcus sp. which is suggested for wastewater treatment purposes. The result of scanning electron microscopy (sem) shows differences in morphology in terms of surface; smoother and cleaner (before the experiment), cracks and rough surface with black/white spots (after the experiment). These findings seemly can be applied efficiently in kitchen wastewater treatment as well as a production medium for microalgae biomass.
Go to article

Authors and Affiliations

N.A.R. Shaari
1
N.M. Apandi
1 2
ORCID: ORCID
N.M. Sunar
3
ORCID: ORCID
R. Nagarajah
1
K. Cheong
1
S.S.M. Ahia
1
Khairul Anwar Abdul Halim
4
ORCID: ORCID
M. Gacek
5
ORCID: ORCID
Wan Mastura Wan Ibrahim
4
ORCID: ORCID

  1. Universiti Tun Hussein Onn Malaysia Faculty Of Engineering Technology, Department of Civil Engineering Technology, Pagoh Education Hub, 84600, Pagoh, Muar, Johor, Malaysia
  2. Universiti Tun Hussein Onn Malaysia, Susta Inable Engineering Technology Research Centre (Setechrc), Faculty of Civil Engineering Technology, Pagoh Educat Ion Hub, 84600, Pagoh, Muar, Johor, Malaysia
  3. Universiti Tun Hussein Onn Malaysia, Research Centre for Soft Soil (Recess), Institute of Integrat Edengineering, 86400 Batu Pahat , Johor, Malaysia
  4. Universiti Malaysia Perlis (Unimap), Centre of Excellence Geopolymer & Green Technology (Cegeogtech), 01000 Perlis, Malaysia
  5. Czestochowa University of Technology, Faculty of Production Engineering And Materials Technology. Department of Physics, 19 Armii Krajowej Av., 42-200 Czestochowa , Poland
Download PDF Download RIS Download Bibtex

Abstract

The removal of organic dyes from industrial wastewater remains a problem, both technically and

economically. In this study, Yarrowia lipolytica yeast cells were isolated from poultry meat and immobilized using

alginate. The immobilized Yarrowia lipolytica yeast was used as biosorbent to remove methylene blue (MB) dye

from synthetic effl uent water. The results show that maximum adsorption capacity under optimum conditions was

66.67 mg∙g-1. The equilibrium adsorption data fi tted well onto the Freundlich adsorption isotherms with R2

>0.99.

Adsorption kinetics was of pseudo-second order process suggesting that the adsorption was a chemisorption. FTIR

spectra identifi ed typical absorption bands of a biosorbent. Sorption of MB dye on Yarrowia lipolytica yeast cells

was exothermic with weak sorption interaction.

Go to article

Authors and Affiliations

Mathew Mupa
Robert Kubara
Jephris Gere
Download PDF Download RIS Download Bibtex

Abstract

The presented work introduces a simple modification of coal fl y ash (FA) with 30% solution of H 20 2, used as a new efficient sorbent for the removal of organic dye crystal violet (CV) in the presence of Cu(II) ions in single- and bi-component systems Cu(II)-CV. FT-IR, TG, SEM-EDS, and XRD suggested that the mechanism of Cu(II) and CV sorption onto FA-H 2O 2 includes ion-exchange and surface adsorption process. Comparing the values of the reduced chi-square test (χ 2/DoF) and the determination coefficient R 2 obtained for CV of the considered isotherms, the fitting degree follows the sequence: Jovanović > Langmuir > Elovich > Freundlich > Redlich-Peterson (R-P) > Tóth > Halsey > BET. Sorption of Cu(II) ions in a single system by means of FA-H 2O 2 was well fi tted by the Langmuir and R-P model. The studies of equilibrium in a bi-component system by means of extended Langmuir (EL), extended Langmuir-Freundlich (ELF), and Jain-Snoeyink (JS) models were analysed. The estimation of parameters of sorption isotherms in a bi-component system Cu(II)-CV has shown that the best of fi t calculated values of experimental data for both sorbates have been the EL model and the JS model, but only in the case of a CV dye. The sorption kinetic of Cu(II) and CV onto FA-H 2O 2 was discussed by means of the PFO, PSO, and intra-particle diff usion models.
Go to article

Authors and Affiliations

Eleonora Sočo
1
Dariusz Pająk
1
Jan Kalembkiewicz
1

  1. Department of Inorganic and Analytical Chemistry, University of Technology, Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study aims at the immobilization and characterization of thermoalkalophilic lipases produced recombinantly from Bacillus thermocatenulatus BTL2 and Bacillus pumilus MBB03. For this purpose, immobilization of the produced enzymes in calcium-alginate@gelatin (Ca–Alg@gelatin) hydrogel beads, immobilization optimization and characterization measurements of the immobilized-enzyme hydrogels were conducted. Optimum temperature and pH values were determined for B. thermocatenulatus and B. pumilus MBB03 immobilized-enzyme hydrogels (60–70 °C, 55 °C and pH 9.5, pH 8.5). Thermal stability was determined between 65 °C and 60 °C of B. thermocatenulatus and B. pumilus MBB03 immobilized enzymes, respectively. The pH stability was determined between pH 7.0–11.0 at +4°C and pH 8.0–10.0 at +4 °C, respectively.
In conclusion, the entrapment technique provided controlled production of small diameter hydrogel beads (~ 0:19 and ~ 0:29) with negligible loss of enzyme. These beads retained high lipase activity at high pH and temperature. The activity of Ca–Alg@gelatin-immobilized lipase remained relatively stable for up to three cycles and then markedly decreased. With this enzyme immobilization, it may have a potential for use in esterification and transesterification reactions carried out in organic solvent environments. We can conclude that it is one of the most promising techniques for highly efficient and economically competent biotechnological processes in the field of biotransformation, diagnostics, pharmaceutical, food and detergent industries.
Go to article

Authors and Affiliations

Kezban Yildiz Dalginli
1
ORCID: ORCID
Onur Atakisi
2
ORCID: ORCID

  1. Department of Chemistry and Chemical Processing Technologies, Kars Vocational High School Kafkas University, Kars, Turkey
  2. Department of Chemistry, Faculty Science and Letter, Kafkas University, Kars, Turkey
Download PDF Download RIS Download Bibtex

Abstract

In this study, we aimed to investigate the effects of vitamin E on mouse adrenal glands in immobilization stress. Twenty-eight male, 10-week-old, BALB/C mice weighing 30-45 grams were divided into four groups. Mice were placed in a cage where no movement was allowed 6 hours/day for 7 days for immobilization stress. 10 ml/kg vitamin E was administered orogastrically 1 hour before immobilization stress in the vitamin E and stress+vitamin E group. At the end of the 7th day, all the animals were subjected to elevated-plus maze (anxiety) and forced swimming (depression) tests. Left adrenal glands were dissected for routine paraffin tissue embedding protocol. Adrenal sections were stained with hematoxylin-eosin and Azan. Malonaldehyde (MDA) levels were also measured in the adrenal tissues. Anxiety level (0.023), depression level (p=0.042) and MDA values (p=0.01) were significantly increased in the stress group. Histological sections of the stress group showed cortical atrophy, medullary hypertrophy, vascular dilation and hemorrhage. Azan staining revealed a thinned capsule and corticomedullary fibrosis in the stress group. Pathologies induced by immobilization stress were mostly reversed after vitamin E administration. The results suggested that vitamin E alleviates adverse effects of immobilization stress (oxidative, behavioral and histopathologic changes) in mice.
Go to article

Authors and Affiliations

F. Aşır
1
Y. Nergiz
1
A. Pala
1

  1. Department of Histology and Embryology, School of Medicine, Dicle University, Diyarbakır, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Cut-off walls built using self-hardening slurries are an important tool for modern engineering pursuing Sustainable Development Goals. Much like cement concrete, this material is affected by the challenges posed by the increasing human pressure on the environment, although it is used significantly less widely than concrete; for this reason, relatively little comprehensive literature data is available describing the interaction of self-hardening slurries with the environment. This article provides a review that complements the current state of knowledge on self-hardening slurries in this area, with a particular focus on the durability of the material and its pollutant immobilization capabilities. To provide context, the material’s operating conditions, properties and components are briefly characterized. The resistance of self-hardening slurries to environmental aggression is described extensively, as it is a key factor in ensuring the durability of the material. A sample analysis of the material’s carbon footprint in several representative composition variants is presented. The subject of pollutant immobilization by self-hardening slurries is outlined. Lines of further research are proposed to fill gaps in the available knowledge.
Go to article

Authors and Affiliations

Łukasz Szarek
1
ORCID: ORCID
Łukasz Krysiak
1
ORCID: ORCID
Zbigniew Kledyński
1
ORCID: ORCID
Agnieszka Machowska
1
ORCID: ORCID
Paweł Falaciński
1
ORCID: ORCID

  1. Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The growing number of municipal sewage treatment plants in Poland raises the problem of managing more and more sludge. The thermal treatment of municipal sewage sludge (TTMSS), which significantly reduces the volume of waste, results in an increase in the concentration of heavy metals in the fly ashes – the final products of the process. The search for methods of utilization of fly ash from TTMSS resulted in attempts to use it in hardening slurries widely used in hydro-engineering. Due to the nature of the application of this material in the cut-off walls (exposure to groundwater flow) one of the key issues is the degree of heavy metal immobilization. The paper attempted to determine the degree of leaching of selected heavy metals from the hardened hardening slurry, composed of fly ash from TTMSS. For this purpose, the eluates were prepared from samples, after various periods of curing, using a dynamic short-term method called "Batch test". The liquid used for leaching was: distilled water and 0.1 molar EDTA solution – to determine the amount of potentially mobile heavy metal forms. The results show the possibility of the safe usage of fly ash from TTMSS as an additive for hardening slurries.

Go to article

Authors and Affiliations

Łukasz Szarek
ORCID: ORCID
Paweł Falaciński
ORCID: ORCID
Małgorzata Wojtkowska

This page uses 'cookies'. Learn more