Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 72
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the family of three analyzers allowing to measure impedance in the range of 10 Ω<|Zx|<10 GΩ in a wide frequency range from 10 mHz up to 100 kHz. The most important features of the analyzer family are: miniaturization, low power consumption, low production cost, telemetric controlling and the use of an impedance measurement method based on digital signal processing (DSP). The miniaturization and other above-mentioned features of the analyzers were obtained thanks to the use of the newest generation of large-scale integration chips: e.g. “system on a chip” microsystems (AD5933), 32-bit AVR32-family microcontrollers and specialized modules for wireless communication using the ZigBee standard. When comparing metrological parameters, the developed instrumentation can equal portable analyzers offered by top worldwide manufacturers (Gamry, Ivium) but outperforms them on smaller dimensions, weight, a few times lower price and the possibility to work in a distributed telemetric network. All analyzer versions are able to be put into medium-volume production.

Go to article

Authors and Affiliations

Jerzy Hoja
Grzegorz Lentka
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an impedance measurement method using a particular sampling method which is an alternative to DFT calculation. The method uses a sine excitation signal and sampling response signals proportional to current flowing through and voltage across the measured impedance. The object impedance is calculated without using Fourier transform. The method was first evaluated in MATLAB by means of simulation. The method was then practically verified in a constructed simple impedance measurement instrument based on a PSoC (Programmable System on Chip). The obtained calculation simplification recommends the method for implementation in simple portable impedance analyzers destined for operation in the field or embedding in sensors.

Go to article

Authors and Affiliations

Grzegorz Lentka
Download PDF Download RIS Download Bibtex

Abstract

In this paper the method of fast impedance spectroscopy of technical objects with high impedance (|Zx| ≥1 GΩ) is evaluated by means of simulation and a practical experiment. The method is based on excitation of an object with a sinc signal and sampling the response signals proportional to current flowing through and voltage across the measured impedance. The object’s impedance spectrum is obtained with the use of continuous Fourier transform on the basis of linear approximations between samples in two acquisition sections, connected with the duration of the sinc signal. The method is first evaluated in MATLAB by means of simulation. An influence of the sinc signal duration and the number of samples on impedance modulus and argument measurement errors is explored. The method is then practically verified in a constructed laboratory impedance spectroscopy measurement system. The obtained acceleration of impedance spectroscopy in the low frequency range (below 1 Hz) and the decrease of the number of acquired samples enable to recommend the worked out method for implementation in portable impedance analyzers destined for operation in the field.

Go to article

Authors and Affiliations

Michał Kowalewski
Grzegorz Lentka
Download PDF Download RIS Download Bibtex

Abstract

The paper reports the consequences of lanthanum modifications of barium bismuth niobiate (BaBi2Nb2O9) ceramics. The discussed materials were prepared by solid state synthesis and a one-step sintering process. The investigations are focused on dielectric aspects of the modification. The presented results reveal that the trivalent lanthanum ions incorporate twovalent barium ions, which is connected with the creation of A-site cationic vacancies as well as oxygen vacancies. Such a scenario results in significant decreasing in grain boundaries resistivity. The activation energy of grain boundaries conductivity is significantly reduced in the case of lanthanum admixture.

Go to article

Authors and Affiliations

M. Adamczyk-Habrajska
ORCID: ORCID
T. Goryczka
ORCID: ORCID
D. Szalbot
ORCID: ORCID
J. Dzik
ORCID: ORCID
M. Rerak
D. Bochenek
Download PDF Download RIS Download Bibtex

Abstract

This paper presents and compares microphone calibration methods for the simultaneous calibration of small electret microphones in a wave guide. The microphones are simultaneously calibrated to a reference microphone both in amplitude and phase. The calibration procedure is formulated on the basis of the damped plane wave propagation equation, from which the acoustics field along the wave guide is predicted, using several reference measurements. Different calibration models are presented and the methods were found to be sensitive to the formulation, as well as to the number of free parameters used during the reconstruction of the wave-field. The wave guide model based on five free parameters was found to be the preferred method for this type of calibration procedure.

Go to article

Authors and Affiliations

Péter Tóth
Christophe Schram
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an investigation about acoustic absorption of mortars with partial replacement of sand by waste (plywood formwork, rice husk, and thermoplastic shoe counters), examining different levels of replacement (0%, 5%, 10%, 25%, and 50%). The measurement of acoustic absorption was performed using a plane wave impedance tube with 100 mm diameter, using mortar samples of 20 mm, in frequency range 200-2000 Hz. Results demonstrated that some composite with waste presented noise reduction coefficient (NRC) above the reference mortar (NRC = 0.0343), such as a composite with 50% rice husk (NRC = 0.2757) and other with 50% of plywood waste (NRC = 0.2052). Since there is virtually no cost or difficulty to use these residuals, it may be concluded that it is a sustainable alternative to improve the acoustic comfort and reduce the impact of the waste on the environment.
Go to article

Authors and Affiliations

Marco Aurélio Stumpf González
Fernanda Flach
Josiane Reschke Pires
Marlova Piva Kulakowski
Download PDF Download RIS Download Bibtex

Abstract

The suitability of low-cost impedance sensors for microbiological purposes and biofilm growth monitoring was evaluated. The sensors with interdigitated electrodes were fabricated in PCB and LTCC technologies. The electrodes were golden (LTCC) or gold-plated (PCB) to provide surface stability. The sensors were used for monitoring growth and degradation of the reference ATCC 15442 Pseudomonas aeruginosa strain biofilm in invitro setting. During the experiment, the impedance spectra of the sensors were measured and analysed using electrical equivalent circuit (EEC) modelling. Additionally, the process of adhesion and growth of bacteria on a sensor’s surface was assessed by means of the optical and SEM microscopy. EEC and SEM microscopic analysis revealed that the gold layer on copper electrodes was not tight, making the PCB sensors susceptible to corrosion while the LTCC sensors had good surface stability. It turned out that the LTCC sensors are suitable for monitoring pseudomonal biofilm and the PCB sensors are good detectors of ongoing stages of biofilm formation.

Go to article

Authors and Affiliations

Konrad Chabowski
Adam F. Junka
Tomasz Piasecki
Damian Nowak
Karol Nitsch
Danuta Smutnicka
Marzenna Bartoszewicz
Magdalena Moczała
Patrycja Szymczyk
Download PDF Download RIS Download Bibtex

Abstract

An implemented impedance measuring instrument is described in this paper. The device uses a dsPIC (Digital Signal Peripheral Interface Controller) as a processing unit, and a DDS (Direct Digital Synthesizer) to stimulate the measurement circuit composed by the reference impedance and the unknown impedance. The voltages across the impedances are amplified by programmable gain instrumentation amplifiers and then digitized by analog to digital converters. The impedance is measured by applying a seven-parameter sine-fitting algorithm to estimate the sine signal parameters. The dsPIC communicates through RS-232 or USB with a computer, where the measurement results can be analyzed. The device also has an LCD to display the measurement results.

Go to article

Authors and Affiliations

José Santos
Pedro Ramos
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a new method for simultaneous tracking of varying grid impedance and its uncertainty bounds. Impedance tracking consists of two stages. In the first stage, the actual noise estimate is obtained from least squares (LS) residua. In the second stage, the noise covariance matrix is approximated with the use of residual information. Then weighted least squares (WLS) method is applied in order to estimate impedance and background voltage. Finally uncertainty bounds for impedance estimation are computed. The robustness of the method has been verified using simulated signals. The proposed method has been compared to sliding LS. The results have shown, that the method performs much better than the LS for all considered cases, even in the presence of significant background voltage variations.

Go to article

Authors and Affiliations

Dariusz Borkowski
Szymon Barczentewicz
Download PDF Download RIS Download Bibtex

Abstract

The authors paid particular attention to the problem of antenna impedance measurements in the RFID technique. These measurements have to be realized by using two ports of a vector network analyzer and dedicated passive differential probes. Since the measurement process and estimated parameters depend on the frequency band, operating conditions, type of the system component and antenna designs used, appropriate verification of the impedance parameters on the basis of properly conducted experiments is a crucial stage in the antenna synthesis of transponders and read/write devices. Accordingly, a systematized procedure of impedance measurements is proposed. It can be easily implemented by designers preparing antennas for different kinds of RFID applications. The essence of indirect measurements of the differential impedance parameters is discussed in details. The experimental verification has been made on the basis of a few representative examples.

Go to article

Authors and Affiliations

Piotr Jankowski-Mihułowicz
Grzegorz Pitera
Mariusz Węglarski
Download PDF Download RIS Download Bibtex

Abstract

This paper adopts a fractional calculus perspective to describe a non-linear electrical inductor. First, the electrical impedance spectroscopy technique is used for measuring the impedance of the device. Second, the experimental data is approximated by means of fractional-order models. The results demonstrate that the proposed approach represents the inductor using a limited number of parameters, while highlighting its most relevant characteristics.

Go to article

Authors and Affiliations

A.M. Lopes
J.A. Tenreiro Machado
Download PDF Download RIS Download Bibtex

Abstract

A novel current-inversion type negative impedance converter (CNIC) is presented. It is built without the use of any resistors. Furthermore, a second-order low-pass filter based on this CNIC is also analysed. It shows a bandwidth of 50 MHz at 320 µW power consumption and 2 V supply voltage when realized in a 0.35 µm CMOS process.

Go to article

Authors and Affiliations

W. Jendernalik
Download PDF Download RIS Download Bibtex

Abstract

One major problem in the design of ultrasonic transducers results from a huge impedance mismatch between piezoelectric ceramics and the loading medium (e.g. gaseous, liquid, and biological media). Solving this problem requires the use of a matching layer (or layers). Optimal selection of materials functioning as matching layers for piezoelectric transducers used in transmitting and receiving ultrasound waves strictly depends on the type of the medium receiving the ultrasound energy. Several methods allow optimal selection of materials used as matching layers. When using a single matching layer, its impedance can be calculated on the basis of the Chebyshev, DeSilets or Souquet criteria. In the general case, the typically applied methods use an analogy to a transmission line in order to calculate the transmission coefficient T. This paper presents an extension of transmission coefficient calculations with additional regard to the attenuation coefficients of particular layers. The transmission coefficient T is optimised on the basis of a genetic algorithm method. The obtained results indicate a significant divergence between the classical calculation methods and the genetic algorithm method.

Go to article

Authors and Affiliations

Tadeusz Gudra
Dariusz Banasiak
Download PDF Download RIS Download Bibtex

Abstract

The main aim of the below presented work was to investigate the possibility of using impedance spectroscopy in the unpasteurized beer microbial contamination degree assessment. Advantages of the impedance spectroscopy method, a negligible number of similar published results as well as their practical aspect make the research important. Four different types of beerswere investigated whichwere unfit for consumption due to improper storage and were heavily microbiologically contaminated. Their impedance was measured in the frequency range from 0.1 Hz to 1 kHz before and after centrifugation. Based on the measured values, an innovative electrical equivalent circuit was proposed and the parameters of the circuit elements were fitted. The obtained results show significant differences (23 up to 35%) in the values of resistance modelling the diffusion phenomenon. Such large changes, resulting from the removal of biomass from the samples, prove the validity of impedance spectroscopy in the study of the properties of unpasteurized beer. According to the authors, it would be possible to use the proposed methodology during the production of beer.With some limitations, it should aid in the early detection of microbial contamination.
Go to article

Authors and Affiliations

Łukasz Macioszek
1
ORCID: ORCID
Sylwia Andrzejczak-Grzadko
2
ORCID: ORCID
Olga Konkol
2
Ryszard Rybski
1
ORCID: ORCID

  1. University of Zielona Góra, Institute of Metrology, Electronics and Computer Science, ul. prof. Z. Szafrana 2, 65-246 Zielona Góra, Poland
  2. University of Zielona Góra, Institute of Biological Sciences, ul. prof. Z. Szafrana 1, 65-516 Zielona Góra, Poland
Download PDF Download RIS Download Bibtex

Abstract

In recent years, assessing supply system impedance has become crucial due to the concerns on power quality and the proliferation of distributed generators. In this paper, a novel method is shown for passive measurement of system impedances using the gapless waveform data collected by a portable power quality monitoring device. This method improves the overall measurement accuracy through data regrouping. Compared with the traditional methods that use the consecutive measurement data directly, the proposed method regroups the data to find better candidates with less flotation on the system side. Simulation studies and extensive field tests have been conducted to verify the effectiveness of the proposed method. The results indicate that the proposed method can serve as a useful tool for impedance measurement tasks performed by utility companies.
Go to article

Authors and Affiliations

Shuangting Xu
1
Xianyong Xiao
1
Yang Wang
1
Jun Wu
2
ORCID: ORCID

  1. Sichuan University, The College of Electrical and Engineering, Chengdu 610065, China
  2. Electric Power Research Institute of State Grid Zhejiang Electric Power Company, Hangzhou 310014, China
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a novel Power-Frequency Droop Control (PFDC) is introduced to perfectly bring back the system frequency and share the reactive power in isolated microgrid with virtual power plant (VPP). The frequency-based power delivery must be essentially implemented in VPP which can operate as a conventional synchronous generator. It has been attained by enhancing the power processing unit of each VPP to operate as an active generator. The inverter coupling impedance which has been assigned by the virtual impedance technique has reduced the affected power coupling resulting from line resistance. The reference has been subsequently adjusted to compensate the frequency deviation caused by load variation and retrieve the VPP frequency to its nominal value. In addition, the line voltage drop has compensated the voltage drop and load sharing error to obliterate the reactive power sharing imprecision resulting from the voltage deviation. The voltage feedback confirms the correct voltage after compensating the voltage drop. As an illustration, conventional PFDC after a load change cannot restore the system frequency which is deviated from 50 Hz and rested in 49.9 Hz while, proposed PFDC strategy fades away the frequency deviation via compensating the variation of the frequency reference. Likewise, the frequency restoration factor ( γ) has an effective role in retrieving the system frequency, i.e., the restoration rate of the system frequency is in proportion with γ. As a whole, the simulation results have pointed to the high performance of proposed strategy in an isolated microgrid.
Go to article

Bibliography

  1.  G.U. Atmo, C.F. Duffield, and D. Wilson, “Structuring procurement to improve sustainability outcomes of power plant projects”, Energy Technol. Policy 2(1), 47‒57 (2015).
  2.  P. Kumar, P.S. Sikder, and N. Pal, “Biomass fuel cell based distributed generation system for Sagar Island”, Bull. Pol. Ac.: Tech. 66(5), 665‒674 (2018).
  3.  M. Wieczorek, M. Lewandowski, and W. Jefimowski, “Cost comparison of different configurations of a hybrid energy storage system with battery-only and supercapacitor-only storage in an electric city bus”, Bull. Pol. Ac.: Tech. 44(6), 1095‒1106 (2019).
  4.  W. Marańda and M. Piotrowicz, “Efficiency of maximum power point tracking in photovoltaic system under variable solar irradiance”, Bull. Pol. Ac.: Tech. 62(4), 713‒721 (2014).
  5.  U. Akram, M. Khalid, and S. Shafiq, “An innovative hybrid wind-solar and battery-supercapacitor microgrid system-development and optimization”, IEEE Access 5(10), 25897‒25912 (2017).
  6.  M.A. Hannan, M.G.M. Abdolrasol, M. Faisal, P.J. Ker, R.A. Begum, and A. Hussain, “Binary particle swarm optimization for scheduling MG integrated virtual power plant toward energy saving”, IEEE Access 7(6), 107937‒07951 (2019).
  7.  T. Wu, Z. Liu, and J. Liu, “A unified virtual power decoupling method for droop-controlled parallel inverters in microgrids”, IEEE Trans. Power Electron. 31(8), 5587‒5603 (2016).
  8.  F. Shahnia and A. Ghosh, “Coupling of neighbouring low voltage residential distribution feeders for voltage profile improvement using power electronics converters”, IET Renew. Power Gener. 10(2), 535‒547 (2016).
  9.  X. Tang, X. Hu, and N. Li, “A novel frequency and voltage control method for islanded based on multienergy storages”, IEEE Trans. Smart Grid 7(1), 410‒419 (2016).
  10.  H. Zhang, S. Kim, Q. Sun, and J. Zhou, “Distributed adaptive virtual impedance control for accurate reactive power sharing based on consensus control in microgrids”, IEEE Trans. Smart Grid 8(4), 1749‒1761 (2017).
  11.  M. Eskandari and L. Li, “Microgrid Operation Improvement by Adaptive Virtual Impedance”, IET Renew. Power Gener. 13(2), 296‒307 (2018).
  12.  Z.A. Obaid, L.M. Cipcigan, L. Abrahim, and M.T. Muhsin, “Frequency control of future power systems: reviewing and evaluating challenges and new control methods”, J. Mod. Power Syst. Clean Energy 7(1), 9‒25 (2019).
  13.  R.M. Imran, S. Wang, and F.M.F. Flaih, “DQ-Voltage droop control and robust secondary restoration with eligibility to operate during communication failure in autonomous microgrid”, IEEE Access 7(12), 6353‒6361 (2019).
  14.  N.N. AbuBakar, M.Y. Hassan, M.F. Sulaima, M. Na’im, M. Nasir and A. Khamisd, “Microgrid and load shedding scheme during islanded mode: A review”, Renewable Sustainable Energy Rev., 71(6), 161‒169 (2017).
  15.  T.A. Jumani, M.W. Mustafa, M.M. Rasid, N.H. Mirjat, Z.H. Leghari, and M.S. Saeed, “Optimal Voltage and Frequency Control of an Islanded Microgrid Using Grasshopper Optimization Algorithm”, Energies 11(11), 1‒20 (2018).
  16.  Y. Han, P. Shen, and X. Zhao, “An enhanced power sharing scheme for voltage unbalance and harmonics compensation in an islanded AC microgrid”, IEEE Trans. Energy Convers. 31(3), 1037‒1050 (2016).
  17.  M. Kosari and S.H. Hosseinian, “Decentralized reactive power sharing and frequency restoration in islanded microgrid”, IEEE Trans. Power Syst. 32(4), 2901‒2912 (2017).
  18.  Y.A. Mohamed and E.F. El-Saadany, “Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids”, IEEE Trans. Power Electron. 23(6), 2806‒2816 (2008).
  19.  X. Hou, Y. Sun, H. Han, Z. Liu, W. Yuan, and M. Su, “A fully decentralized control of grid-connected cascaded inverters”, IEEE Trans. Power Deliv. 10(1), 315‒317 (2019).
  20.  L. Li, Y. Sun, Z. Liu, X. Hou, G. Shi, and M. Su, “A decentralized control with unique equilibrium point for cascaded-type microgrid”, IEEE Trans. Sustain. Energy 10(1), 324‒326 (2019).
  21.  F. Guo, C. Wen, and J. Mao, “Distributed secondary voltage and frequency restoration control of droop-con-trolled inverter-based microgrids”, IEEE Trans. Ind. Electron. 62(7), 4355‒4364 (2015).
  22.  S. Zuo, A. Davoudi, and Y. Song, “Distributed finite-time voltage and frequency restoration in islanded AC microgrids”, IEEE Trans. Ind. Electron. 63(10), 5988‒5997 (2016).
  23.  C. Dou, Z. Zhang, and D. Yu, “MAS-based hierarchical distributed coordinate control strategy of virtual power source voltage in low- voltage microgrid”, IEEE Access 5(1), 11381‒11390 (2017).
  24.  N.M. Dehkordi, N. Sadati, and M. Hamzeh, “Distributed robust finite-time secondary voltage and frequency control of islanded microgrids”, IEEE Trans. Power Syst., 32(5), 3648‒3659 (2017).
  25.  N.M. Dehkordi, N. Sadati, and M. Hamzeh, “Fully distributed cooperative secondary frequency and voltage control of islanded microgrids”, IEEE Trans. Energy Convers. 32(2), 675‒685 (2017).
  26.  D.O. Amoateng, M.A. Hosani, and M.S. Elmoursi, “Adaptive voltage and frequency control of islanded multi-microgrids”, IEEE Trans. Power Syst. 33(4), 4454‒4465 (2018).
  27.  Q. Shafiee, J.M. Guerrero, and J.C. Vasquez, “Distributed secondary control for islanded microgrids-a novel approach”, IEEE Trans. Power Electron. 29(2), 1018‒1031 (2014).
  28.  U. Sowmmiya and U. Govindarajan, “Control and power transfer operation of WRIG-based WECS in a hybrid AC/DC microgrid”, IET Renewable Power Gener. 12(3), 359‒373 (2018).
  29.  Z. Zhang, C. Dou, and D. Yu, “An event-triggered secondary control strategy with network delay in islanded microgrids”, IEEE Syst. J. 13(2), 1851‒1860 (2019).
  30.  J. He and Y. Li, “An enhanced microgrid load demand sharing strategy”, IEEE Trans. Power Electron. 27(9), 3984‒3995 (2012).
  31.  Y. Fan, G. Hu, and M. Egerstedt, “Distributed reactive power sharing control for microgrids with event-triggered communication”, IEEE Trans. Control Syst. Technol. 25(1), 118‒128 (2017).
  32.  X. Lu. J. Lai, and X. Yu, “Distributed coordination of islanded microgrid clusters using a two-layer intermittent communication network”, IEEE Trans. Ind. Inf. 14(9), 3956‒3969 (2018).
  33.  X. Wu, C. Shen, and R. Iravani, “A distributed, cooperative frequency and voltage control for microgrids”, IEEE Trans. Smart Grid, 9(4), 2764‒2776 (2018).
  34.  G. Lou, W. Gu, and L. Wang, “Decentralized secondary voltage and frequency control scheme for islanded microgrid based on adaptive state estimator”, IET Gener. Transm. Distrib., 11(15), 3683‒3693 (2017).
  35.  B. Wang, S. Liu, and Y. Zhang, “Reactive power sharing control based on voltage compensation strategy in microgrid”, 36th Chinese Control Conference (2017).
  36.  H.E.Z. Farag, S. Saxena, and A. Asif, “A robust dynamic state estimation for droop controlled islanded microgrids”, Electr. Power Syst. Res. 140(11), 445‒455 (2016).
  37.  K. Sabzevari, S. Karimi, F. Khosravi, and H. Abdi, “Modified droop control for improving adaptive virtual impedance strategy for parallel distributed generation units in islanded microgrids, Int. Trans. Electr. Energy Syst., 29(1), e2689 (2019).
  38.  C. Dou, Z. Zhang, D. Yue, and M. Song, “Improved droop control based on virtual impedance and virtual power source in low-voltage microgrid”, IET Gener. Transm. Distrib. 11(4), 1046‒1054 (2017).
  39.  P.K. Ray, N. Kishor, and S.R. Mohanty, “Islanding and power quality disturbance detection in grid-connected hybrid power system using wavelet and S-transform”, IEEE Trans. Smart Grid, 3(3), 1082‒1094 (2012).
Go to article

Authors and Affiliations

Amir Khanjanzadeh
1
Soodabeh Soleymani
1
Babak Mozafari
1

  1. Electrical and Computer Engineering Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
Download PDF Download RIS Download Bibtex

Abstract

In slowly flaring horns the wave fronts can be considered approximately plane and the input impedance can be calculated with the transmission line method (short cones in series). In a rapidly flaring horn the kinetic energy of transverse flow adds to the local inertance, resulting in an effective increase in length when it is located in a pressure node. For low frequencies corrections are available. These fail at higher frequencies when cross-dimensions become comparable to the wavelength, causing resonances in the cross-direction. To investigate this, the pipe radiating in outer space is modelled with a finite difference method. The outer boundaries must be fully absorbing as the walls of an anechoic chamber. To achieve this, Berenger's perfectly matched layer technique is applied. Results are presented for conical horns, they are compared with earlier published investigations on flanges. The input impedance changes when the largest cross-dimension (outer diameter of flange or diameter of the horn end) becomes comparable to half a wavelength. This effect shifts the position of higher modes in the pipe, influencing the conditions for mode locking, important for ease of playing, dynamic range and sound quality.

Go to article

Authors and Affiliations

Cornelis Nederveen
Download PDF Download RIS Download Bibtex

Abstract

Source/filter models have frequently been used to model sound production of the vocal apparatus and musical instruments. Beginning in 1968, in an effort to measure the transfer function (i.e., transmission response or filter characteristic) of a trombone while being played by expert musicians, sound pressure signals from the mouthpiece and the trombone bell output were recorded in an anechoic room and then subjected to harmonic spectrum analysis. Output/input ratios of the signals’ harmonic amplitudes plotted vs. harmonic frequency then became points on the trombone’s transfer function. The first such recordings were made on analog 1/4 inch stereo magnetic tape. In 2000 digital recordings of trombone mouthpiece and anechoic output signals were made that provide a more accurate measurement of the trombone filter characteristic. Results show that the filter is a high-pass type with a cutoff frequency around 1000 Hz. Whereas the characteristic below cutoff is quite stable, above cutoff it is extremely variable, depending on level. In addition, measurements made using a swept-sine-wave system in 1972 verified the high-pass behavior, but they also showed a series of resonances whose minima correspond to the harmonic frequencies which occur under performance conditions. For frequencies below cutoff the two types of measurements corresponded well, but above cutoff there was a considerable difference. The general effect is that output harmonics above cutoff are greater than would be expected from linear filter theory, and this effect becomes stronger as input pressure increases. In the 1990s and early 2000s this nonlinear effect was verified by theory and measurements which showed that nonlinear propagation takes place in the trombone, causing a wave steepening effect at high amplitudes, thus increasing the relative strengths of the upper harmonics.

Go to article

Authors and Affiliations

James W. Beauchamp
Download PDF Download RIS Download Bibtex

Abstract

A rigorous analysis of sound radiation by a pulsating sphere forming a resonator together with a semi-spherical cavity is presented. Both hard/soft boundaries are considered, as well as mixed. The problem is solved by dividing the entire region into two subregions, one surrounding the sphere and containing the cavity and the other for the remaining half-space. Continuity conditions are applied to obtain the acoustic pressure. Then the acoustic radiation resistance is calculated both in the near- and far-field. The acoustic radiation reactance is calculated in the impedance approach. The resonance frequencies are determined, for which a significant growth of the sound pressure level is observed as well as the sound field directivity. These rigorous results are presented in the form of highly convergent, accurate and numerically efficient series.
Go to article

Authors and Affiliations

Wojciech P. Rdzanek
Download PDF Download RIS Download Bibtex

Abstract

Several methods can be applied for analyses of the acoustic field in enclosed rooms namely: wave propagation, geometrical or statistical analysis. The paper presents problems related to application of the boundary elements method to modelling of acoustic field parameters. Experimental and numerical studies have been combined for evaluation of acoustic impedance of the material used for the walls of a model room. The experimental studies have been carried out by implementing a multichannel measuring system inside the constructed model of an industrial room. The measuring system allowed simultaneous measurements of the source parameters - the loudspeaker membrane vibration speed, the acoustic pressure values in reception points located inside the model space as well as phase shifts between signals registered in various reception points. The numerical modelling making use of the acoustic pressure values measured inside the analyzed space allowed determination of requested parameters of the surface at the space boundary.

Go to article

Authors and Affiliations

Janusz Piechowicz
Ireneusz Czajka
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a novel complementary CPWfed slotted microstrip patch antenna for operation at 2.4 GHz, 5.2 GHz and 6.3 GHz frequencies. The primary structure consists of the complementary split ring resonator slots on a patch and the design is fabricated on FR-4 epoxy substrate with substrate thickness of 1.6 mm. The described structure lacks the presence of a ground plane and makes use of a number of circular complementary SRRs along with rectangular slots on the radiating patch. The structure provides a wide bandwidth of around 390 MHz, 470 MHz and 600 MHz at the three bands with return losses of -11.5 dB, -24.3996dB and -24.4226 dB, respectively. The inclusion of the rectangular slots in the CSRR based slot antenna with stairecase structure improved the performance with respect to return loss.

Go to article

Authors and Affiliations

Kaustubh Bhattacharyya
Rupanda Thangjam
Sivaranjan Goswami
Kumaresh Sarmah
Sunandan Baruah
Download PDF Download RIS Download Bibtex

Abstract

In this study, the corrosion properties of Ti-6Mo-6V-5Cr-3Sn-2.5Zr alloy were investigated as a function of the cold rolling ratio and annealing temperature. The annealing treatment was carried out at temperature of 680°C, 730°C, and 780°C. The highest corrosion potential observed in the specimen with a 10% rolling ratio was 179 mV, which was more positive than that of the non-rolled specimen (–0.214 Vssc). The lowest corrosion current density (1.30×10–8 A/cm2) was observed in the non-rolled specimen which suggested that the integrity of its passive oxide layer was superior to that of the cold-rolled specimens. Time-dependent EIS evaluation revealed that the consistency of the passive oxide layer was highly affected by the subjected rolling ratio over time.

Go to article

Authors and Affiliations

Hocheol Song
Ahmad Zakiyuddin
Sinhye Kim
Kwangmin Lee
Download PDF Download RIS Download Bibtex

Abstract

This paper describes the study of thermal properties of packages of silicon carbide Schottky diodes. In the paper the packaging process of Schottky diodes, the measuring method of thermal parameters, as well as the results of measurements are presented. The measured waveforms of transient thermal impedance of the examined diodes are compared with the waveforms of this parameter measured for commercially available Schottky diodes.

Go to article

Authors and Affiliations

Damian Bisewski
Marcin Myśliwiec
Krzysztof Górecki
Ryszard Kisiel
Janusz Zarębski

This page uses 'cookies'. Learn more