Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the article was to characterize the international steam coal market based on the latest available data. The information goes back to the first half of 2018. The article focuses on the description of the three largest exporters and importers of steam coal. Representatives in these categories were selected using the latest global statistics on 2017. In 2017, global production of steam coal amounted to 5.68 billion tons and exceeded production in 2016 by 4%. For several years, invariably the world’s leading exporters of steam coal are: Indonesia, Australia and Russia. In total, these three countries in 2017 supplied 73% of steam coal to the international market. However, for the 46% of global steam coal imports (data for 2017), three Asian countries are responsible: China, India and Japan. For each of the six listed countries (i.e. for: three major global exporters and three major global importers), the paper presents volumes related to coal production, export or import. The directions of deliveries or major coal exporters to a given country were also included. At the end of the article, the price situation was presented, as it appeared in the first half of 2018 on the European and Asian markets.

Go to article

Authors and Affiliations

Katarzyna Stala-Szlugaj
Download PDF Download RIS Download Bibtex

Abstract

The article analyzes trends in steam coal flows (exports and imports) linked to production and consumption volumes. The analysis carried out in the article took the years from 2000 to 2019 into consideration. Coal is the second most important energy carrier. Its share in the structure of global consumption amounts to 27% and its production has an upward trend despite its decreasing share. The overall global upward trend of steam coal flows was disrupted twice over the period 2000–2019: by the effects of the 2007–2009 global financial crisis and the ongoing uncertainty of the global economy, as well as by the significant slowdown in the economic growth of developing countries (2014–2016). The European Union has seen large decreases in coal consumption over recent years, reflecting an accelerating decarbonization policy. The main area of coal trade is the Asia-Pacific basin. The Atlantic market currently accounts for about 20% of global steam coal trade, with seaborne trade covering about 95%. The volume of world trade (exports, imports) in steam coal is approximately one billion (bn) tons per year. The analysis carried out showed the following trend: decreasing coal exports to economically developed countries (mainly concentrated in Europe) and increasing exports to economies of developing countries, concentrated in the Asian part of the world. International Energy Agency (IE A) projections show that by 2040 the global coal production will fall from 5.6bn tons of coal equivalent (3.9bn tons of oil equivalent in 2019) to 5bn tce (3.5bn toe) at an average annual rate of –1.1%. Steam coal production is expected to decline by 10% to 4bn tce (2.8bn toe). Due to the fact that China is the largest producer, user and importer of steam coal in the world, all economic and political decisions taken by its government have strongly influenced international coal trade for years. For the Asia-Pacific basin alone, the IE A’s long-term forecasts predict an increase in coal-fired power generation over 2019. Forecasts regarding the coal’s share in global demand are not optimistic for many regions of the world (Europe, Africa, the Americas), predicting a significant decline in its demand. Yet, new markets for coal are emerging, especially in Asia and the Mediterranean basin, which may contribute to maintaining at least the current level of coal trade.
Go to article

Authors and Affiliations

Katarzyna Stala-Szlugaj
1
ORCID: ORCID
Zbigniew Grudziński
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

A growing number of Czech construction companies now recognise the importance of supplementing traditional financial measurements with a wider range of non-financial measurements as well. A significant number of organisations are adopting different models of performance measurement to implement business improvement strategies. The main aim of our research was to elucidate the importance that Czech construction companies attach to the individual criteria used in measurement systems. Original data were collected using a questionnaire survey. The answers were quantified in terms of the frequency of occurrence and relative importance index. The results show that traditional measurement criteria such as time and cost are still the most important for construction companies measurement systems. Positive finding is that certain new areas of measurement are increasingly being incorporated into measurement practice and their importance for Czech construction companies is growing rapidly, especially in the area of measuring the productivity of workers and craftsmen together with the productivity of subcontractors. The environmental impact of construction is still one of the least important areas in the measurement systems of construction contracts in Czech construction companies.
Go to article

Authors and Affiliations

Petr Trtílek
1
ORCID: ORCID
Tomáš Hanák
1
ORCID: ORCID

  1. Brno University of Technology, Faculty of Civil Engineering, Veverí 331/95, 602 00 Brno, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The paper analyzes the impact of potential changes in the price relation between domestic and imported coal and its influence on the volume of coal imported to Poland. The study is carried out with the application of a computable model of the Polish energy system. The model reflects fundamental relations between coal suppliers (domestic coal mines, importers) and key coal consumers (power plants, combined heat and power plants, heat plants, industrial power plants). The model is run under thirteen scenarios, differentiated by the ratio of the imported coal price versus the domestic coal price for 2020–2030. The results of the scenario in which the prices of imported and domestic coal, expressed in PLN/GJ, are equal, indicate that the volume of supplies of imported coal is in the range of 8.3–11.5 million Mg (depending on the year). In the case of an increase in prices of imported coal with respect to the domestic one, supplies of imported coal are at the level of 0.4–4.1 million Mg (depending on the year). With a decrease in the price of imported coal, there is a gradual increase in the supply of coal imports. For the scenario in which a 30% lower imported coal price is assumed, the level of imported coal almost doubles (180%), while the supply from domestic mines is reduced by around 28%, when compared to the levels observed in the reference scenario. The obtained results also allow for the development of an analysis of the range of coal imports depending on domestic versus imported coal price relations in the form of cartograms.

Go to article

Authors and Affiliations

Jacek Kamiński
Download PDF Download RIS Download Bibtex

Abstract

The raw material economy determines energy security for individual countries in the world. Coal is one of the most important energy carriers for electricity production and heat generation. World market trends of fossil raw materials such as hard coal and lignite were presented. In the European Union a significant decrease in coal and lignite consumption has been observed in recent years. This situation is primarily related to the accelerating decarbonisation policy and support of renewable energy sources, which are considered to be environmentally friendly. The pandemic occurring in recent years has also played an important role in shaping the raw materials market. The author shows the possibilities and directions in which the coal economy has prospects for development and expansion. The amount of the world’s coal resources is presented, as well as the size of the global consumption of the raw material in the 2000–2011 years, specifying in China, India, Asia, the USA and the countries of the European Union. The structure of the coal economy is presented in the light of the policies and laws enacted by the European Union Comission, in particular in Poland, Germany and France. The appearance of the hard coal sector and lignite sector in Poland is described in detail. The size of resources was given in terms of coal classification. The presented data were based on a range of information and reports from world organizations such as the International Energy Agency or British Petroleum.
Go to article

Bibliography


AGEB 2021 – Energy Consumption in Germany 2020. Arbeitsgemeinschaft Energiebilanzen 2021. [Online] https://ag-energiebilanzen.de/4-1-Home.html [Accessed: 2021-05-01].

ARE 2009–2019 – Energy Situation in Poland National Energy Balance 4th Quarter 2009–2019 (Sytuacja Energetyczna w Polsce Krajowy Bilans Energii IV Kwartał 2009–2019) Agencja Rynku Energii (in Polish).

Blaschke, W. and Ozga-Blaschke, U. 2015 – Coking coal as a critical raw material in the EU (Węgiel koksowy surowcem krytycznym w UE). Zeszyty Naukowe IGSMiE PAN 90, pp. 131–143 (in Polish).

BP 2002 – BP Statistical Review of World Energy 2002, June 2002. [Online] https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html [Accessed: 2021-05-01].

BP 2020 – BP Statistical Review of World Energy 2020, June 2020. [Online] https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html [Accessed: 2021-05-01].

Central Statistical Office 2020 – Employment and Wages in the National Economy in 2019 (Zatrudnienie i wynagrodzenia w gospodarce narodowej w 2019 r.). [Online] https://stat.gov.pl/obszary-tematyczne/rynek-pracy/pracujacy-zatrudnieni-wynagrodzenia-koszty-pracy/zatrudnienie-i-wynagrodzenia-w-gospodarce-narodowej -w-2019-roku,1,37.html [Accessed: 2021-05-01] (in Polish).

Euracoal 2006–2020 – Euracoal Market Report. Editions from the years 2006–2020. [Online] https://euracoal.eu/ [Accessed: 2021-06-04].

Euracoal Statistics 2012–2020 – Coal and lignite production and imports in Europe [Online] https://euracoal.eu/info/euracoal-eu-statistics/ [Accessed: 2021-06-04].

European Commission 2020 – A More Ambitious Climate Goal for Europe by 2030 Investing in a Climate Neutral Future for the Benefit of Citizens. [Online] https://ec.europa.eu/ [Accessed: 2021-06-25].

France 2021 – France energy report May 2021. [Online] https://www.enerdata.net/estore/country-profiles/france.html [Accessed: 2021-06-25].

IEA 2021 – Global Energy Review 2021 Assessing the effects of economic recoveries on global energy demand and CO2 emissions in 2021 International Energy Agency 2021. [Online] https://www.iea.org/reports/global-energy-review-2021 [Accessed: 2020-07-24].

IEEFA 2020 – Coal-fired electricity generation in France fell 72% in 2019. Institute for Energy Economics and Financial Analysis [Online]: https://ieefa.org/coal-fired-electricity-generation-in-france-fell-72-in–2019/ [Accessed: 2020-07-24].

Kasztelewicz et al. 2018 – Kasztelewicz, Z., Tajduś, A., Cała, M. Ptak, M. and Sikora, M. 2018. Strategic Conditions for the Future of Brown Coal Mining in Poland. Polityka Energetyczna – Energy Policy Journal 21(4), pp. 155–178. doi : 10.33223/epj/103691.

Kasztelewicz et al. 2018 – Kasztelewicz, Z., Ptak, M. and Sikora, M. 2018. Lignite as the Optimal Energy Raw Material for Poland (Węgiel brunatny optymalnym surowcem energetycznym dla Polski). Zeszyty Naukowe IGSMiE PAN 106, pp. 61–84. doi : 10.24425/124403 (in Polish).

KOBiZE 2019 – National emission balance of SO2, NOx, CO, NH3, NMLZO, dust, heavy metals and POPs for 2015–2017 by SNAP classification. Synthesis report, 2019 (Krajowy bilans emisji SO2, NOx, CO, NH3, NMLZO, pyłów, metali ciężkich i TZO za lata 2015–2017 w układzie klasyfikacji SNAP. Raport syntetyczny, 2019). Krajowy Ośrodek Bilansowania i Zarządzania Emisjami (KOBiZE), Instytut Ochrony Środowiska – Państwowy Instytut Badawczy, Warszawa 2019 (in Polish).

Krawczyk, P. 2020. Evaluation of the situation of hard coal mining in Poland in 2016–2018 using the public income balance method (Ocena stanu górnictwa węgla kamiennego w Polsce w latach 2016–2018 przy wykorzystaniu metody bilansu dochodów publicznych). Przegląd Górniczy 76(4), pp. 44–54 (in Polish).

Młynarski, T. 2014. Energy policy and security in France (Polityka i bezpieczeństwo energetyczne Francji). Teka Kom. Politol. Stos. Międzynar. – OL PAN, 9, pp. 51–62 (in Polish).

Ozga-Blashke, U. 2020. Coking coal in the European green deal strategy. Inżynieria Mineralna 2(2), pp. 87–93.

PEP2040 project – Energy Policy of Poland until 2040 – strategy of fuel and energy sector development (Polityka energetyczna Polski do 2040 r. – strategia rozwoju sektora paliwowo-energetycznego). Warszawa: Ministerstwo Energii, 2019 (in Polish).

PEP2040 – Energy Policy of Poland until 2040 – strategy of fuel and energy sector development (Polityka energetyczna Polski do 2040 r.). Warszawa: Ministerstwo Energii, 2021 (in Polish).

Pepłowska et al. 2017 – Pepłowska, M., Gawlik, L. and Kryzia, D. 2017. Statistical analysis of the relationship between the economic condition of mining supporting companies and the condition of the hard coal mining industry (Analiza statystyczna zależności finansów przedsiębiorstw okołogórniczych od kondycji branży górnictwa węgla kamiennego). Przegląd Górniczy 73(11), pp. 15–22 (in Polish).

PIG-PIB 2020 – Balance of Mineral Reserves and Deposits in Poland As at 31 December 2019 (Bilans zasobów i złóż kopalin w Polsce wg stanu Na 31 XII 2019 r.) Warszawa 2020 (in Polish).

PN-G-97002: 2018-11 Hard coal – Classification – Types (PN-G-97002: 2018-11 Węgiel kamienny – Klasyfikacja – Rodzaje) (in Polish).

Ratajczak, T. and Hycnar, E. 2017. Supporting minerals in lignite deposits (Kopaliny towarzyszące w złożach węgla brunatnego). Kraków: MERRI PAS (in Polish).

SRP 2021 – List of exploration, appraisal and production licences for solid minerals (as at 30 June 2020) (Lista koncesji poszukiwawczych, rozpoznawczych oraz wydobywczych dot. kopalin stałych (stan na dzień 30 czerwca 2020 r.)) Serwis Rzeczypospolitej Polskiej [Online] https://dane.gov.pl/dataset/221,zestawienia-koncesji-udzielonych-przez-ministra-srodowiska/resource/25028/table?page=1&per_page=50&q=brunatny&sort= [Accessed: 2020-07-24] (in Polish).

Tajduś, A. 2021. „QUO VADIS” Polish mining? („QUO VADIS” polskie górnictwo?) Przegląd Górniczy 77(1–3), pp. 7–13 (in Polish).

Wasilewski, P. and Kobel-Najzarek, E. 1973. Structure and properties of hard coal (Budowa i własności węgla kamiennego). Gliwice: Wyd. PŚl (in Polish).

WEO 2019 – World Energy Outlook 2019. [Online] https://www.iea.org/reports/world-energy--outlook–2019 [Accessed: 2020-07-24].

WEO 2021 – World Energy Outlook 2020. [Online] https://www.iea.org/reports/world-energy-outlook–2020/ [Accessed: 2021-07-3].

Zhang et al. 2020 – Zhang, K., Yang, S., Liu, S., Shangguan, J., Du, W., Wang, Z. and Chang, Z. 2020 – New strategy toward household coal combustion by remarkably reducing SO2 emission. American Chemical Society Omega 5(6), pp. 3047–3054.
Go to article

Authors and Affiliations

Monika Pepłowska
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The functioning of European economies and societies requires a stable and sustainable supply of mineral resources. For 10 years now EU has been developing raw materials initiative to secure European minerals supply. In many cases, areas with known or hypothetic mineral resources, are not sufficiently valued by society and authorities, remain unprotected and face competing land uses with the risk of becoming sterilized. MINATURA 2020 project was born out of a need to develop a harmonised framework which allow a common way of identifying “mineral deposits of public importance” (MDoPI) and their safeguarding via land use planning. The project has left a useful set of guidelines and proposals how to advance on the creation of a European network of MDoPIs to avoid sterilization of “deposits worth safeguarding”.

In Poland, the need for legal protection of mineral deposits has been discussed intensively in recent years. Various proposals aimed at better system of mineral deposits safeguarding, especially those which should be recognized as of public importance, have been proposed. However, until now only a few coal deposits were recognized as strategic. Currently, the Polish National Mineral Policy is under preparation. Its overriding objective is to provide access to the necessary minerals, also in the longterm perspective. It assumes among others activities aimed at protection of mineral deposits regarding land use planning system.

Paper presents scope and general results of MINATURA2020 project, with details on MINATURA2020 methodology implementation in Poland, Project of the Polish National Mineral Policy with its objectives and key pillars, position of MDoPIs in this Project, and – finally – expected future steps related to MDoPI safeguarding in EU and in Poland.

Go to article

Authors and Affiliations

Krzysztof Galos
ORCID: ORCID
Günter Tiess
Alicja Kot-Niewiadomska
ORCID: ORCID
Diego Murguia
Blazena Wertichová
Download PDF Download RIS Download Bibtex

Abstract

Ensuring the security of power generation systems is a pillar of the proper functioning of each state. Energy security is fundamental to ensure both economic growth and social welfare. As energy storage has not developed in an efficient extent, covering the current and prospective power demand is a major challenge for transmission system operators. Moreover, the activities that are to be taken should be technically and economically justified and need to meet the requirements of environmental protection. Cooperation between neighboring countries in the field of electricity exchange is among the activities undertaken to ensure the safety of the power generation systems. The integration of electricity markets is one of the key challenges of the European Union’s energy policy. The European Commission issued a directive on interconnection, according to which the capacity of interconnections should total 10% of installed capacity until 2020 (and 15% until 2030) in each Member State. The main objective of this study is to assess the changes in electricity imports and exports in 2003–2018 and to investigate the current level of cross-border exchanges between Poland and the neighboring countries. This paper also answers the question of whether Poland will fulfil the obligations set by the European Commission. In addition, the paper presents the risks and the challenges related to fulfilling the mentioned commitments. The results of the study indicate that the development and modernization of network infrastructure in the field of cross-border exchange are necessary because, in the context of the forecasted increase in electricity demand, Polish generation units will not be able to meet the demand.

Go to article

Authors and Affiliations

Aleksandra Komorowska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Cash is one of the most critical resources of a construction company that determines survival. Cash-flow management is essential for contractors, as lack of cash resources is one of the leading causes of bankruptcy in the construction industry, compared to most other sectors. The purpose of this paper is to identify factors affecting time and cost trade-off in multiple construction projects in Iraq. After reviewing a wide range of literature to determine the most common elements, a questionnaire is distributed to owners, consultants, supervising engineers, and contractors engaged in construction projects. The results of the questionnaire were analyzed using the relative importance index, arithmetic mean and standard deviation. The respondents namely assured Seventeen most essential factors; payments delay from client, progress payment due period, payment conditions, advanced payment, project delay, inaccurate project scheduling, variation orders, project duration, inaccurate project duration, profit, risk margin, project cost, cash flow forecasts, retentions percentage, estimating errors, materials cost, equipment cost, and labour cost.
Go to article

Authors and Affiliations

Musaab Falih Hasan
1
ORCID: ORCID
Sawsan Rasheed Mohammed
2

  1. Department of Civil Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  2. University of Baghdad, College of Engineering, Department of Civil Engineering, Baghdad, Iraq
Download PDF Download RIS Download Bibtex

Abstract

This article presents research on the structure of energy mixes and the dependence on imports of the EU-27 member states, with a particular emphasis on Poland. During the conducted research, a spatial information system was used. GIS tools made it possible to build layers presenting information based on the countries’ energy mix, the level of dependence on the import of this fuel, and the share of the Russian Federation in fuel imports. It was also examined whether the level of dependence on imports from Russia was dependent on the geographical location. Since it has been shown that the share of Russian fuel is significant in the energy mixes of many member states, and that security does not depend solely on import dependence, an energy security assessment measure has been created (SES). As the level of security consists of many factors, assessing each of them separately is very difficult and unclear. Therefore, in order to simplify this analysis, it was necessary to determine one indicator that would take into account all the factors influencing the level of energy security. Poland is privileged in terms of access to fossil fuels due to its rich coal deposits; however, the potential of this fuel is not used, which is also indicated by the level of the SES measure. In the case of Poland, SES amounts to less than 16% and is almost three times lower than the EU-27 average. The indicator made it possible to indicate not only those factors that positively affect the level of energy security but also those that adversely affect it. It also enabled the identification of possible remedial measures.
Go to article

Authors and Affiliations

Aurelia Rybak
1
ORCID: ORCID
Aleksandra Rybak
1
ORCID: ORCID
Spas D. Kolev
2

  1. Silesian University of Technology, Gliwice, Poland
  2. School of Chemistry, The University of Melbourne, Australia
Download PDF Download RIS Download Bibtex

Abstract

The historical datasets at operating mine sites are usually large. Directly applying large datasets to build prediction models may lead to inaccurate results. To overcome the real-world challenges, this study aimed to handle these large datasets using Gaussian mixture modelling (GMM) for developing a novel and accurate prediction model of truck productivity. A large dataset of truck haulage collected at operating mine sites was clustered by GMM into three latent classes before the prediction model was built. The labels of these latent classes generated a latent variable. Two multiple linear regression (MLR) models were then constructed, including the ordinary-MLR (O-MLR) and the hybrid GMM-MLR models. The GMM-MLR model incorporated the observed input variables and a latent variable in the form of interaction terms. The O-MLR model was the baseline model and did not involve the latent variable. The GMM-MLR model performed considerably better than the O-MLR model in predicting truck productivity. The interaction terms quantitatively measured the differences in how the observed input variables affected truck productivity in three classes (high, medium, and low truck productivity). The haul distance was the most crucial input variable in the GMM-MLR model. This study provides new insights into handling massive amounts of data in truck haulage datasets and a more accurate prediction model for truck productivity.
Go to article

Authors and Affiliations

Chengkai Fan
1
ORCID: ORCID
Na Zhang
2
ORCID: ORCID
Bei Jiang
2
ORCID: ORCID
Wei Victor Liu
2
ORCID: ORCID

  1. University of Alberta , Edmonton, Department of Civil and Environmental Engineering, Alberta T6G 2E3, Canada
  2. University of Alberta , Department of Mathematical and Statistical Sciences, Edmonton, Alberta T6G 2G1, Canada
Download PDF Download RIS Download Bibtex

Abstract

This study rigorously examines the pressing issue of dump slope stability in Indian opencast coal mines, a problem that has led to significant safety incidents and operational hindrances. Employing machine learning algorithms such as Random Forest (RF), k-Nearest Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), and Gaussian Naive Bayes (GNB), the study aims to achieve a scientific goal of predictive accuracy for slope stability under various environmental and operational conditions. Promising accuracies were attained, notably with RF (0.98), SVM (0.98), and DT (0.97). To address the class imbalance issue, the Synthetic Minority Oversampling Technique (SMOTE) was implemented, resulting in improved model performance. Furthermore, this study introduced a novel feature importance technique to identify critical factors affecting dump slope stability, offering new insights into the mechanisms leading to slope failures. These findings have significant implications for enhancing safety measures and operational efficiency in opencast mines, not only in India but potentially globally.
Go to article

Authors and Affiliations

Sudhir Kumar Singh
1
ORCID: ORCID
Debashish Chakravarty
1
ORCID: ORCID

  1. Indian Institute of Technology, Department of Mining Engineering, Kharagpur, India

This page uses 'cookies'. Learn more