Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of a series of Cone Penetration Test CPTu performed near the city of Wroclaw (Poland). The tests were carried out in 13 testing points located in close distance to each other. To verify the results of the penetration tests, fine-grained soil samples from selected depths were taken for laboratory tests. The study focuses on the evaluation of soil type, unit weight, and undrained shear strength cu, and compression index Cc. The grain size distribution of the soil and its mechanical parameters on the basis of a uniaxial compression and an oedometer tests were estimated. A comparison of laboratory and CPTu for selected values is presented. Determination of soil type was carried out on the basis of ISBT and IC values and good agreement with the granulometric composition was found. For undrained shear strength, commonly used correlations based on Nk, Nkt and Nke were adopted. However, the values obtained from the CPT are significantly lower than the results from laboratory tests. Therefore, values of cone factors suitable for investigated soil type and reference test were proposed. In the case of the compression index, the coefficient values βc and αm obtained agreed with those available in the literature. The findings presented in the paper indicate that laboratory tests remain necessary to identify soil properties from CPTu. The presented results are also a contribution to the knowledge of local soil conditions in the Lower Silesia area (Poland).
Go to article

Bibliography

[1] F.H. Kulhawy, P.W. Mayne, Manual on estimating soil properties for foundation design (No. EPRI-EL-6800). Electric Power Research Inst., Palo Alto, CA (USA ); Cornell Univ., Ithaca, NY (USA ), Geotechnical Engineering Group (1990).
[2] T . Lunne, P.K. Robertson, J.J.M. Powell, Cone Penetration Testing in Geotechnical Practice. Blackie Academic/ Routledge Publishing, New York (1997).
[3] K . Karlsrud, T. Lunne, D.A. Kort, S. Strandvik, CPTU correlations for clays. In: Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering 16 (2), p. 693 (2005).
[4] P.K. Robertson, Interpretation of cone penetration tests — a unified approach. Can. Geoech. J. 46 (11), 1337-1355 (2009), DOI: https://doi.org/10.1139/T09-065
[5] P .K. Robertson, The James K. Mitchell Lecture: Interpretation of in-situ tests-some insights. In: Proc. 4th Int. Conf. on Geotechnical and Geophysical Site Characterization – ISC 4, 3-24 (2012).
[6] P .W. Mayne, Interpretation of geotechnical parameters from seismic piezocone tests. In: Proc. 3rd Intl. Symposium on Cone Penetration Testing, CPT’14, 47-73 (2014).
[7] A. Eslami, S. Moshfeghi, H. MolaAbasi, M.M. Eslami, Piezocone and Cone Penetration Test (CPTu and CPT) Applications in Foundation Engineering. Butterworth-Heinemann (2019).
[8] P.K. Robertson, Soil behaviour type from the CPT. In: Proc. 2nd Int. Symposium on Cone Penetration Testing, CPT’10 (2010).
[9] P.K. Robertson, Cone penetration test (CPT)-based soil behaviour type (SBT) classification system — an update. Can. Geotech. J. 53 (12), 1910-1927 (2016) DOI: https://doi.org/10.1139/cgj-2016-0044
[10] P.K. Robertson, K.L. Cabal, Estimating soil unit weight from CPT. In: Proc. 2nd Int. Symposium on Cone Penetration Testing, CPT’10 (2010).
[11] P.W. Mayne, J. Peuchen, D. Bouwmeester, Soil unit weight estimation from CPTs. In: Proc. 2nd Int. Symposium on Cone Penetration Testing, CPT’10, (2010).
[12] L .Y. Ju, C. Miao, Z.J. Cao, P. Hubbard, K. Soga, K., D.Q. Li, Geo-Congress 2020: Modeling. Geomaterials and Site Characterization, 558-568 (2020).
[13] K . Karlsrud, K. Brattlien, T. Lunne, Improved CPTU interpretations based on block samples. NGI (1997).
[14] H.E. Low, T. Lunne, K.H. Andersen, M.A. Sjursen, X. Li, M.F. Randolph, Estimation of intact and remoulded undrained shear strengths from penetration tests in soft clays. Géotechnique 60 (11), 843-859 (2010), DOI: https://doi.org/10.1680/geot.9.P.017
[15] Z . Rémai, Correlation of undrained shear strength and CPT resistance. Per. Pol. Civil Eng. 57 (1), 39-44 (2013), DOI: https://doi.org/10.3311/PPci.2140
[16] A .K.M. Zein, International Journal of Geo-Engineering 8 (1), (2017), DOI: https://doi.org/10.1186/s40703-017- 0046-y
[17] P.W. Mayne, J. Peuchen, Evaluation of CPTU Nkt cone factor for undrained strength of clays. In: Proc. 4th Intl. Symposium on Cone Penetration Testing (CPT’18), 423-429 (2018).
[18] A. Drevininkas, G. Creer, M. Nkemitag, Comparison of consolidation characteristics from CPTu, DMT and laboratory testing at Ashbridges Bay, Toronto, Ontario. in: Proceedings of the 64th Canadian Geotechnical Conference and 14th PanAmerican Conference on Soil Mechanics and Geotechnical Engineering, Toronto, Canada (2011).
[19] K . Koster, G. Erkens, C. Zwanenburg, A new soil mechanics approach to quantify and predict land subsidence by peat compression. Geophysical Research Letters 43, 10792-10799 (2016), DOI: https://doi.org/10.1002/2016GL 071116
[20] M. Mir, A. Bouafia, K. Rahmani, N. Aouali, Analysis of load-settlement behaviour of shallow foundations in saturated clays based on CPT and DPT tests. Geomech. Eng. 13 (1), 119-139 (2017), DOI: https://doi.org/10.12989/ gae.2017.13.1.119
[21] B. Di Buò, J. Selänpää, T. Lansivaara, M. D’Ignazio, Evaluation of existing CPTu-based correlations for the deformation properties of Finnish soft clays. In: Proc. 4th Int. Symposium on Cone Penetration Testing (CPT’18), 185-191 (2018).
[22] Z . Bednarczyk, R. Sandven, Comparison of CPTU and laboratory tests interpretation for Polish and Norwegian clays. In: International Site Characterization Conference, ISC-2. International Society of Rock Mechanics (ISRM), International Association Engineering Geology (IAEG), Geo-Institute of the American Society of Civil Engineers (ASCE), Portuguese Association of Engineers (OE) and British Council (BC). Porto, Portugal (2004).
[23] P . Zawrzykraj, P. Rydelek, A. Bąkowska, Geo-engineering properties of Eemian peats from Radzymin (central Poland) in the light of static cone penetration and dilatometer tests. Eng. Geol. 226, 290-300 (2017), DOI: https://doi.org/10.1016/j.enggeo.2017.07.001
[24] J. Konkol, K. Międlarz, L. Bałachowski, Geotechnical characterization of soft soil deposits in Northern Poland. Eng. Geol. 259, 105187 (2019), DOI: https://doi.org/10.1016/j.enggeo.2019.105187
[25] J. Nawrocki, A. Becker (red.), Atlas geologiczny Polski. Państ. Inst. Geol., Warszawa (2017).
[26] PN -EN ISO 17892, Geotechnical investigation and testing. Laboratory testing of soil.
[27] PN -EN ISO 14688, Geotechnical investigation and testing. Identification and classification of soil.
[28] S. Shimobe, G. Spagnoli, Relationships between undrained shear strength, liquidity index, and water content ratio of clays. Bull. Eng. Geol. Environ. 79, 4817-4828 (2020), DOI: https://doi.org/10.1007/s10064-020-01844-5
[29] P.K. Robertson, C.E. Wride, Evaluating cyclic liquefaction potential using the cone penetration test. Can. Geoecht. J. 35 (3), 442-459 (1998), DOI: https://doi.org/10.1139/t98-017
[30] I. Bagińska, Estimating and verifying soil unit weight determined on the basis of SCPTu tests. Ann. Warsaw Univ. Life Sci. – SGGW. Land Reclam. 48 (3), 233-242 (2016), DOI: https://doi.org/10.1515/sggw-2016-0018
[31] P.W. Mayne, Evaluating effective stress parameters and undrained shear strengths of soft-firm clays from CPT and DMT. Australian Geomechanics Journal 51 (4), 27-55 (2016).
[32] A. Cheshomi, Empirical relationships of CPTu results and undrained shear strength. J. GeoEng. 13 (2), 49-57 (2018), DOI: http://dx.doi.org/10.6310/jog.201806_13(2).1
[33] C.P. Wroth, The interpretation of in situ soil tests. Geotechnique 34 (4), 449-489 (1984), DOI: https://doi.org/10.1680/geot.1984.34.4.449
[34] R. Larsson, M. Mulabdic, Piezocone tests in clay. Swedish Geotechnical Institute, Linköping, Report 42, (1991).
[35] Y .J. Shin, D. Kim, Assessment of undrained shear strength based on Cone Penetration Test (CPT) for clayey soils. J. Civ. Eng. 15 (7), 1161-6 (2011), DOI: https://doi.org/10.1007/s12205-011-0808-6
[36] A .H. El-Bosraty, A.M. Ebid, A.L. Fayed, Estimation of the undrained shear strength of east Port-Said clay using the genetic programming. Ain Shams Engineering Journal 11 (4), 961-969 (2020), DOI: https://doi.org/10.1016/j.asej.2020.02.007
[37] L . Bałachowski, K. Międlarz, J. Konkol, Strength parameters of deltaic soils determined with CPTU, DMT and FVT. In: Proc. 4th Int. Symposium on Cone Penetration Testing (CPT’18), 117-121 (2018).
[38] S.J. Hong, M. Lee, J. Kim, W. Lee, Evaluation of undrained shear strength of Busan clay using CPT. In: Proc. 2nd Int. Symposium on Cone Penetration Testing, CPT’10 (2010).
[39] K . Koster, G. De Lange, R. Harting, E. de Heer, H. Middelkoop, Characterizing void ratio and compressibility of Holocene peat with CPT for assessing coastal–deltaic subsidence. Q. J. Eng. Geol. Hydrogeol. 51 (2), 210-218 (2018), DOI: https://doi.org/10.1144/qjegh2017-120
[40] G. Sanglerat, The Penetrometer and Soil Exploration. Dev. Geotech. Eng. (1972).
[41] P.W. Mayne, Cone penetration testing (Vol. 368). Transportation Research Board (2007).



Go to article

Authors and Affiliations

Matylda Tankiewicz
1
ORCID: ORCID
Irena Bagińska
2
ORCID: ORCID

  1. Wrocław University of Environmental and Life Sciences, 25 Norwida Str., 50-375 Wrocław, Poland
  2. Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego st., 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Increasingly complex design systems require an individual approach when determining the necessary design parameters. As soils are characterized by strong strain-dependent nonlinearity, test methods used to characterize the subsoil should be carefully selected, in terms of their "sensitivity" as well as suitability for the analyzed type of problem. When direct measurements are not available, while design calculation models require specific parameters, indirect parameter estimation may be used. This approach requires calibration and validation of empirical correlations, based on well documented database of tests and case studies. One of the parameters often used, when analyzing soil-structure interaction problems, is the shear stiffness of the soil and its strain-dependent degradation. The aim of the article is to present the procedure for description and evaluation of soil stiffness based on field tests (CPTU, DMT and SDMT) and a large number of reference curves obtained from laboratory tests (TRX) for selected soil types. On the basis of the given algorithm, it is possible to obtain a stiffness module G0 value at any level of deformation, based on in-situ tests.

Go to article

Authors and Affiliations

T. Godlewski

This page uses 'cookies'. Learn more