Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the microstructure and high temperature oxidation properties of Fe-25Cr-20Ni-1.5Nb, HK30 alloy manufactured by metal injection molding (MIM) process. The powder used in MIM had a bi-modal size distribution of 0.11 and 9.19 μm and had a spherical shape. The initial powder consisted of γ-Fe and Cr23C6 phases. Microstructural observation of the manufactured (MIMed) HK30 alloy confirmed Cr23C6 along the grain boundary of the γ-Fe matrix, and NbC was distributed evenly on the grain boundary and in the grain. After a 24-hour high temperature oxidation test at air atmospheres of 1000, 1100 and 1200°C, the oxidation weight measured 0.72, 1.11 and 2.29 mg/cm,2 respectively. Cross-sectional observation of the oxidation specimen identified a dense Cr2O3 oxide layer at 1000°C condition, and the thickness of the oxide layer increased as the oxidation temperature increased. At 1100°C and 1200°C oxidation temperatures, Fe-rich oxide was also formed on the dense Cr2O3 oxide layer. Based on the above findings, this study identified the high-temperature oxidation mechanism of HK30 alloy manufactured by MIM.

Go to article

Authors and Affiliations

Dong-Yeol Wi
Young-Kyun Kim
Tae-Sik Yoon
Kee-Ahn Lee
Download PDF Download RIS Download Bibtex

Abstract

In this work, the influence of plastic injection molding conditions, mainly plasticizing conditions: plasticizing pressure (back pressure) and decompression (suck-back) after dosing on weight, thickness, mechanical properties and structure of HDPE parts obtained by injection molding with the addition of chemical blowing agent was done. In order to enable the manufacturing of correctly made molded parts under given plasticizing conditions, other parameters (hold time and hold pressure, injection velocity and injection time) were also changed. It was found that making correct molded parts using decompression requires increased hold pressure and hold time. The share of the porous structure in the parts is inversely proportional to the decompression as well as the hold pressure and hold time, while the plasticizing pressure has little effect on thickness, mass, tensile strength and elongation at maximum force, however, it affects the structure of the molded parts to some extent.
Go to article

Authors and Affiliations

P. Palutkiewicz
1
ORCID: ORCID
P. Postawa
1
ORCID: ORCID
J. Wawrzyniak
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 21 Armii Krajowej Av., 42-201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study investigates the effects of repetitive injection molding on the properties of feedstock using the AISI 4140 feedstock. The properties of feedstock are evaluated from the mixing homogeneity of powder and binder, rheological properties, and dimensional accuracy of parts sintered. The feedstock after the 1st injection molding shows a better homogeneity than as-received feedstock due to re-mixing effects between the screw and barrel during the injection molding process. As the number of recycling numbers increases, the homogeneity, viscosities ad shrinkage ratio of recycled feedstocks show slight differences with those of the as-received feedstock until the 6th molding injection. However, some rheological parameters like the moldability index sharply increased up to the 4th injection but shows a tendency to decrease thereafter.
Go to article

Authors and Affiliations

Jin Man Jang
1 2
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Incheon, 21999, Republic of Korea
  2. Inha University, Department of Materials Science and Engineering, Incheon, 22212, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study is to determine the effect of manufacturing conditions on the mechanical properties and structure of ABS parts. Two sets of samples with the same geometric characteristics were produced by fused deposition modelling (FDM) and injection molding (IM). The molding pressure and cooling rate were found to have a significant effect on shaping the mechanical properties and structure of ABS products. The manufacturing method and adopted process parameters have a significant impact on the degree of packing of macromolecules in the volume of the product and thus determine its density. Selected mechanical properties were determined and compared with their specific gravity. The research was carried out using tools and machines, i.e. injection molds of unique design and standard measuring stations. Tensile and bending strengths and Young’s modulus were related to the density of products obtained under different process conditions and having gradient and solid structures. The results provide useful information for engineers designing products using FDM technology. Relating tensile and flexural strength and Young’s modulus to the specific gravity of the product. It was found that the value of product properties is closely related to various process conditions, which further provides a true description of the products.
Go to article

Authors and Affiliations

Piotr Czyżewski
1
Dawid Marciniak
1
ORCID: ORCID
Dariusz Sykutera
1
ORCID: ORCID

  1. Department of Manufacturing Techniques, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology,Kaliskiego 7, 85-796 Bydgoszcz, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, the bio state of the alloy produced in the modified metal injection system was monitored after sintering. A new system operating with high gas pressure, far from the traditional injection model, has been established for material production. In this system, 316L stainless steel powders were molded using a PEG/PMMA/SA polymer recipe. During molding, approximately 60% 316L and 40% binder by volume were used. The samples obtained were sintered at different temperatures (1100-1300°C) after de-binding. Density measurement (Archimedes) and hardness tests (HV1) of the samples were measured as 6.74 g/cm3 and ~285 HV1, respectively. A potentiodynamic corrosion test was applied to monitor the effect of the amount of oxide in the structure of the 316L stainless steel produced. Corrosion tests were carried out in artificial body solutions. The corrosion rate was measured at the level of 17.08×10–3 mm/y. In terms of biocompatibility, a cytotoxicity test was applied to the samples and the life course of the bacteria was monitored. For the 316L alloys produced, the % vitality reached approximately 103%.
Go to article

Authors and Affiliations

Bünyamin Çiçek
1
Yavuz Sun
2
ORCID: ORCID

  1. Hitit University, Vocational School of Technical Sciences, Machine and Metal Technologies Department, Corum, Turkey
  2. Karabuk University, Engineering Faculty, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The increasing needs of using aluminum epoxy composite as a replacement to solid metal rapid prototyping has opened to interests in optimizing its machining processes. This paper reported on the success of optimizing the surface roughness of aluminium epoxy composite using milling process along with a new finding on the best combination parameters. Taguchi method was used as the optimization method whereas spindle speed, feed rate, and depth of cut were set as input factors using an L9 Orthogonal Array. Analysis of Variance was used to identify the significant factors influencing the surface roughness. Experiment was conducted in dry condition using a vertical milling machine and the surface roughness after the machining was evaluated. Optimum combination of cutting parameters was identified after the finest surface roughness (response) based on the signal-to-noise ratio calculated. Cutting parameters selected after preliminary testing are cutting speeds of (2000, 3000 and 4000) rpm, feed rate (300, 400 and 500) mm/min, and cutting depth (0.15, 0.20, and 0.25) mm. The result showed that cutting speed had the largest percentage contribution to surface roughness with 69% and the second highest contribution was feed rate with 22% and depth of cut at 9%. The spindle speed was found as the most significant factor influencing the quality of surface roughness. The result is significant particularly in providing important guidelines for industries in selecting the right combination of parameters as well as to be cautious with the most significant factor affecting the milling process of metal epoxy composite.
Go to article

Authors and Affiliations

K.W. Leong
1 2
ORCID: ORCID
Z. Shayfull
1 2
ORCID: ORCID
M. Fathullah
1 2
ORCID: ORCID
M.F. Omar
2
ORCID: ORCID
M.M.A. Abdullah
2
ORCID: ORCID
H. Radhwan
1 2
A.H. Mazlan
1
ORCID: ORCID
B. Jeż
3
ORCID: ORCID
M. Nabiałek
3
ORCID: ORCID

  1. Universiti Malaysia Perlis, Faculty of Mechanical Engineering Technology, Perlis, Malaysia
  2. Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Perlis, Malaysia
  3. Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, decomposition and densification behavior of PbAlNbO3-PbZrTiO3 (PAN-PZT) ceramics were characterized for powder injection molding process. Thermal gravity analysis and in-situ dilatometer experiment were carried out to construct master curve. Based on master curve model approach, one-combined master debinding curve (MDC) and master sintering curve (MSC) were constructed for piezoelectric PAN-PZT ceramics. Derived curves matched well with the experimental data. Process optimization and material development will be conducted based on characterization of master curve parameters.

Go to article

Authors and Affiliations

Jun Sae Han
Jae Man Park
Seong Jin Park

This page uses 'cookies'. Learn more