Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to present an in-pipe modular robotic system that can navigate inaccessible industrial pipes in order to check their condition, locate leakages, and clean the ventilation systems. The aspects concerning the development of a lightweight and energy efficient modular robotic system are presented. The paper starts with a short introduction about modular inspection systems in the first chapter, followed by design aspects and finalizing with the test of the developed robotic system.

Go to article

Authors and Affiliations

A. Adrianluţei
Mihai Tâtar
Vistrian Mâtieş
Download PDF Download RIS Download Bibtex

Abstract

The study aimed touse3D computed tomography (CT) to analyse a joint between two dissimilar materials produced by friction stir welding (FSW). As the materials joined, i.e., aluminum and copper, differ in properties (e.g., density and melting point), the weld is predicted to have an inhomogeneous microstructure. The investigations involved applying microfocus computed tomography (micro-CT) to visualize and analyze the volumetric structure of the joint. Volume rendering is extremely useful because, unlike computer modelling, which requires many simplifications, it helps create highly accurate representations of objects. Image segmentation into regions was performed through global gray-scale thresholding. The analysis also included elemental mapping of the weld cross-sections using scanning electron microscopy (SEM) and examination of its surface morphology by means of optical microscopy (OP). The joint finds its use in developing elements used in the chemical, energetics and aerospace industries, due to the excellent possibilities of combining many different properties, and above all, reducing the weight of the structure.
Go to article

Bibliography

[1] Zhao, Y., You, J., Qin, J., Dong, C., Liu, L., Liu, Z. & Miao, S. (2022). Stationary shoulder friction stir welding of Al–Cu dissimilar materials and its mechanism for improving the microstructures and mechanical properties of joint. Materials Science & Engineering A 837, 142754. https://doi.org/10.1016/j.msea.2022.142754.
[2] Zhou, L., Li, G.H., Zhang, R.X., Zhou, W.L., He, W.X., Huang, Y.X. & Song, X.G. (2019). Microstructure evolution and mechanical properties of friction stir spot welded dissimilar aluminum-copper joint. Journal of Alloys and Compounds. 775(15), 372-382. https://doi.org/10.1016/ j.jallcom.2018.10.045.
[3] Tong, L., Xie, J.N., Liu, L., Chang, G. & Ojo, O.O. (2020). Microscopic appraisal and mechanical behavior of hybrid Cu/Al joints fabricated via friction stir spot welding-brazing and modified friction stir clinching-brazing. Journal of Materials Research and Technology. 9(6),13239-13249. https://doi.org/10.1016/j.jmrt.2020.09.042.
[4] Tian, W.H., Su, H. & Wu, C.S. (2020). Effect of ultrasonic vibration on thermal and material flow behavior, microstructure and mechanical properties of friction stir welded al/cu joints. International Journal of Advanced Manufacturing Technology. 107(1), 59-71. https://doi.org/10.1007/s00170-020-05019-0.
[5] Pilarczyk, J. (2005). Engineer's Handbook 2, Welding. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish).
[6] Rajak, D.K., Pagar, D.D., Menezes, P.L. & Eyvazian, A. (2020). Friction-based welding processes: friction welding and friction stir welding. Journal of Adhesion Science and Technology. 34(24), 2613-2637. https://doi.org/10.1080/ 01694243.2020.1780716.
[7] Schneider, J., Chen, P. & Nunes, A.C. (2019). Entrapped oxide formation in the friction stir weld (FSW) process. Metallurgical and Materials Transactions A, 50, 257-270 https://doi.org/10.1007/s11661-018-4974-8.
[8] Rams, B., Pietras, A., & Mroczka K. (2014). Friction stir welding of elements made of cast aluminium alloys. Archives of Foundry Engineering. 59(1), 385-392.
[9] Martinsen, K., Hu, S.J. & Carlson, B.E. (2015). Joining of dissimilar materials. CIRP Annals. 64(2), 679-699. https://doi.org/10.1016/j.cirp.2015.05.006.
[10] Weman, K. (2011). Welding processes handbook. New York: Elsevier.
[11] Singh, R., Kumar, R., Feo, L., et al. (2016). Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement for engineering applications. Composites Part B: Engineering. 101, 77-86. https://doi.org/10.1016/ j.compositesb.2016.06.082.
[12] Rajak, D.K., Pagar, D.D., Menezes, P.L., et al. (2019). Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers. 11(10), 1667. https://doi.org/10.3390/polym11101667.
[13] Lee, H.S., Lee, Y.R., Min, K.J. (2016). Effects of friction stir welding speed on AA2195 alloy. In: MATEC Web of Conferences. Vol. 45, France: EDP Sciences.
[14] Ramnath, B.V., Subramanian, S.A., Rakesh, R. et al. (2018). A review on friction stir welding of aluminium metal matrix composites. In IOP Conference Series: Materials Science and Engineering. 8-9 March 2018. IOP Publishing; 012103.
[15] Bankowski, D., Spadlo, S. (2017). Vibratory tumbling of elements made of Hardox400 steel. In 26th International Conference on Metallurgy and Materials (pp. 725-730).
[16] Karrar, G., Galloway, A., Toumpis, A., Li, H.J. & Al-Badouc, F. (2020). Microstructural characterisation and mechanical properties of dissimilar aa5083-copper joints produced by friction stir welding. Journal of Materials Research and Technology. 9(5), 11968-11979. https://doi.org/10.1016/j.jmrt.2020.08.073.
[17] Galvao, I., Loureiro, A. & Rodrigues, D.M. (2016). Critical review on friction stir welding of aluminium to copper. Science and Technology of Welding and Joining. 21(7), 523-546. https://doi.org/10.1080/13621718.2015.1118813.
[18] Ouyang, J., Yarrapareddy, E. & Kovacevic, R. (2006). Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. Journal of Materials Processing Technology. 172(1), 110-122. https://doi.org/10.1016/j.jmatprotec.2005.09.013.
[19] Mehta, K.P. & Badheka, V.J. (2016). A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants. Materials and Manufacturing Processes. 31(3), 233-254. https://doi.org/10.1080/10426914.2015.1025971.
[20] Cao, F.J., Li, J.P., Hou, W.T., Shen, Y.F., Ni, R. (2021). Microstructural evolution and mechanical properties of the friction stir welded Al Cu dissimilar joint enhanced by post-weld heat treatment. Materials Characterization. 174, 110998. https://doi.org/10.1016/j.matchar.2021.110998.
[21] Hou, W.T., Shen, Z.K., Huda, N., Oheil, M., Shen, Y.F., Jahed, H. & Gerlich, A.P. (2021). Enhancing metallurgical and mechanical properties of friction stir butt welded joints of Al–Cu via cold sprayed Ni interlayer. Materials Science and Engineering: A. 809, 140992. https://doi.org/10.1016/j.msea.2021.140992.
[22] Mao, Y., Ni, Y., Qin, X.D.P. & Li, F. (2020). Microstructural characterization and mechanical properties of micro friction stir welded dissimilar al/cu ultra-thin sheets. Journal of Manufacturing Processes. 60, 356-365. https://doi.org/10.1016/j.jmapro.2020.10.064.
[23] Patel, N.P., Parlikar, P., Dhari, R.S., Mehta, K. & Pandya, M. (2019). Numerical modelling on cooling assisted friction stir welding of dissimilar Al-Cu joint. Journal of Manufacturing Processes. 47, 98-109. https://doi.org/10.1016/j.jmapro.2019.09.020.
[24] Mehta, K.P. & Badheka, V.J. (2017). Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum joints. Journal of Materials Processing Technology. 239, 336-345. https://doi.org/10.1016/ j.jmatprotec.2016.08.037.
[25] You, J.Q., Zhao, Y.Q., Dong, C.L., Wang, C.G., Miao, S., Yi, Y.Y. & Hai, Y.H. (2020). Microstructure characteristics and mechanical properties of stationary shoulder friction stir welded 2219-t6 aluminium alloy at high rotation speeds. The International Journal of Advanced Manufacturing Technology. 108, 987-996. https://doi.org/10.1007/s00170-019-04594-1.
[26] Li, D.X., Yang, X.Q., Cui, L., He, F.Z. & Zhang, X. (2015). Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-t651. Journal of Materials Processing Technology. 222, 391-398. https://doi.org/10.1016/ j.jmatprotec.2015.03.036.
[27] Depczynski, W., Spadlo, S., Mlynarczyk, P., Ziach, E., Hepner P. (2015). The selected properties of porous layers formed by pulse microwelding technique. In METAL 2015: 24TH International Conference on Metallurgy and Materials, 3 - 5 June 2015 (pp.1087-1092). Brno, Czech Republic.
[28] Bańkowski D. & Młynarczyk P. (2020). Visual testing of castings defects after vibratory machining. Archives of Foundry Engineering. 20(4), 72-76. DOI: 10.24425/afe.2020.133350.
[29] Mlynarczyk, P., Spadlo, S. (2016). The analysis of the effects formation iron - tungsten carbide layer on aluminum alloy by electrical discharge alloying process. In METAL 2016: 25th Anniversary International Conference on Metallurgy and Materials, 25 – 27 May 2016 (pp.1109-1114). Brno, Czech Republic.
[30] Depczynski, W. Jasionowski, R., Mlynarczyk, P. (2018). The impact of process variables on the connection parameters during pulse micro-welding of the H800 superalloy. In METAL 2018: 27TH International Conference on Metallurgy and Materials, 23 – 25 May 2018 (pp. 1506-1512). Brno, Czech Republic.
[31] Bankowski, D. & Spadlo, S. (2019). The use of abrasive waterjet cutting to remove flash from castings. Archives of Foundry Engineering. 19(3), 94-98. DOI: 10.24425/afe.2019.129617.
[32] Spadlo, S., Depczynski, W. & Mlynarczyk, P. (2017). Selected properties of high velocity oxy liquid fuel (HVOLF) - sprayed nanocrystalline WC-Co Infralloy(TM) S7412 coatings modified by high energy electric pulse. Metalurgija. 56(3-4), 412-414.
[33] Bonarski, J.T., Kania, B., Bolanowski, K. & Karolczuk, A. (2015). Utility of stress-texture characteristics of structural materials by X-ray. Archives of Metallurgy and Materials. 60(3), 2247-2252. DOI: 10.1515/amm-2015-0370.
[34] Jezierski, G. (1993). Industrial radiography. Warszawa: Wydawnictwa Naukowo-Techniczne. (in Polish).
[35] Cierniak, R. (2005). Computed tomography. Construction of CT devices. Reconstruction algorithms. Warszawa: Akademicka Oficyna Wydawnicza EXIT. (in Polish).
[36] Kielczyk, J. (2006). Industrial radiography. Wydawnictwo Gamma. (in Polish).
[37] Ratajczak, E. (2012). X-ray computed tomography (CT) for industrial tasks. Pomiary Automatyka Robotyka. 5, 104-113. (in Polish).
[38] Cullity, B.D. (1959). Elements of X-Ray diffraction. London: Addison-Wesley Publising Company. Inc.
[39] Axon, H.J., Hume-Rothery, W. (1948). Proc. R. Soc. (London), Ser. A 193, 1.
[40] Pearson, W.B. (1958).: ÑA Handbook of Lattice Spacings and Structures of Metals and Alloysì. Oxford: Pergamon Press.  
Go to article

Authors and Affiliations

Wojciech P. Depczyński
1
ORCID: ORCID
Damian Bańkowski
1
ORCID: ORCID
Piotr S. Młynarczyk
1
ORCID: ORCID

  1. Radiography and Computed Tomography Laboratory, Department of Metal Science and Manufacturing Processes, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents research on the capability of the residual magnetic field (RMF) measurement system to be applied to the railway inspection for the early non-destructive detection of defects. The metal magnetic memory (MMM) phenomena are analysed using normal component Hy of self-magnetic flux leakage (SMFL), and its tangential component Hx, as well as their respective gradients. The measurement apparatus is described together with possible factors that may affect the results of measurement. The Type A uncertainty estimation and repeatability tests were performed. The results demonstrate that the system may be successfully applied to detection of head check flaws.

Go to article

Authors and Affiliations

Mirosław Rucki
ORCID: ORCID
Anna Gockiewicz
Tadeusz Szumiata
Download PDF Download RIS Download Bibtex

Abstract

Geographic trajectory of a pipeline is important information for pipeline maintenance and leak detection. Although accurate trajectory of a ground pipeline usually can be directly measured by using global positioning system technology, it is much difficult to determine trajectory for an underground pipeline where global positioning system signal cannot be received. In this paper, a new method to determine trajectory for an underground pipeline by using a pipeline inspection robot is proposed. The robot is equipped with a low-cost inertial measurement unit and odometers. The kinematic model, measurement model and error propagation model are established for estimating position, velocity and attitude of the robot. The path reconstruction algorithm for the robot is proposed to improve accuracy of trajectory determination based on pipeline features. The experiment is given to illustrate that the position errors of the proposed method are less than 40% of that of the standard extended Kalman filter.
Go to article

Bibliography

[1] Liu, Z.,&Kleiner,Y. (2013). State of the art reviewof the inspection technologies for condition assessment of water pipes. Measurement, 46(1), 1–15. https://doi.org/10.1016/j.measurement.2012.05.032
[2] Kishawy, H. A., & Gabbar, H. A. (2010). Review of pipeline integrity management practices. International Journal of Pressure Vessels and Piping, 87(7), 373–380. https://doi.org/10.1016/ https://j.ijpvp.2010.04.003
[3] Zhang, T.,Wang, X., Chen, Y., Shuai, Y., Ullah, Z., Ju, H., & Zhao, Y. (2019). Geomagnetic detection method for pipeline defects based on ceemdan and WEP-TEO. Metrology and Measurement Systems, 26(2), 345–361. https://doi.org/10.24425/mms.2019.128363
[4] Ju, H.,Wang, X., Zhang, T., Zhao, Y., & Ullah, Z. (2019). Defect recognition of buried pipeline based on approximate entropy and variational mode decomposition. Metrology and Measurement Systems, 26(4), 735–755. https://doi.org/10.24425/mms.2019.129587
[5] Piao, G., Guo, J., Hu, T.,&Deng, Y. (2019). High-sensitivity real-time tracking system for high-speed pipeline inspection gauge. Sensors, 19(3), 731. https://doi.org/10.3390/s19030731
[6] De Araújo, R. P., De Freitas, V. C. G., De Lima, G. F., Salazar, A. O., Neto, A. D. D., & Maitelli, A. L. (2018). Pipeline inspection gauge’s velocity simulation based on pressure differential using artificial neural networks. Sensors, 18(9), 3072. https://doi.org/10.3390/s18093072
[7] Chowdhury, M. S., & Abdel-Hafez, M. F. (2016). Pipeline inspection gauge position estimation using inertial measurement unit, odometer, and a set of reference stations. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B: Mechanical Engineering, 2(2), 021001-1-10. https://doi.org/10.1115/1.4030945
[8] Coramik, M., & Ege, Y. (2017). Discontinuity inspection in pipelines: a comparison review. Measurement, 111, 359–373. https://doi.org/10.1016/j.measurement.2017.07.058
[9] Idroas, M., Abd Aziz, M. F. A., Zakaria, Z., & Ibrahim, M. N. (2019). Imaging of pipeline irregularities using a PIG system based on reflection mode ultrasonic sensors. International Journal of Oil, Gas and Coal Technology, 20(2), 212–223. https://doi.org/10.1504/IJOGCT.2019.097449
[10] Li, Z., Wang, J., Li, B., & Gao, J. (2014). GPS/INS/Odometer integrated system using fuzzy neural network for land vehicle navigation. Journal of Navigation, 67(6), 967–983. https://doi.org/ 10.1017/S0373463314000307
[11] Jiang, Q., Wu, W., Jiang, M., & Li, Y. (2017). A new filtering and smoothing algorithm for railway track surveying based on landmark and IMU/odometer. Sensors, 17(6), 1438. https://doi.org/ 10.3390/s17061438
[12] Georgy, J., Karamat, T., Iqbal, U., & Noureldin, A. (2011). Enhanced MEMS-IMU/odometer/GPS integration using mixture particle filter. GPS Solutions, 15(3), 239–252. https://doi.org/10.1007/s10291-010-0186-4
[13] Zhao, Y. (2015) Cubature plus extended hybrid Kalman filtering method and its application in PPP/IMU tightly coupled navigation systems. IEEE Sensors Journal, 15(12), 6973–6985. https://doi.org/10.1109/JSEN.2015.2469105
[14] Guan, L., Cong, X., Zhang, Q., Liu, F., Gao, Y., An, W., & Noureldin, A. (2020). A comprehensive review of micro-inertial measurement unit based intelligent PIG multi-sensor fusion technologies for small-diameter pipeline surveying. Micromachines, 11(9), 840. https://doi.org/10.3390/mi11090840
[15] Wang, L., Wang, W., Zhang, Q., & Gao, P. (2014). Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro. Optical Engineering, 53(6), 064103. https://doi.org/10.1117/1.OE.53.6.064103
[16] Usarek, Z., &Warnke, K. (2017). Inspection of gas pipelines using magnetic flux leakage technology. Advances in Materials Science, 17(3), 37–45. https://doi.org/10.1515/adms-2017-0014
[17] Sasani, S., Asgari, J., & Amiri-Simkooei, A. R. (2016). Improving MEMS-IMU/GPS integrated systems for land vehicle navigation applications. GPS solutions, 20(1), 89–100. https://doi.org/10.1007/s10291-015-0471-3
[18] Hyun, D., Yang, H. S., Park, H. S., & Kim, H. J. (2010). Dead-reckoning sensor system and tracking algorithm for 3-D pipeline mapping. Mechatronics, 20(2), 213–223. https://doi.org/10.1016/ j.mechatronics.2009.11.009
[19] Lee, D. H., Moon, H., Koo, J. C., & Choi, H. R. (2013). Map building method for urban gas pipelines based on landmark detection. International Journal of Control, Automation, and Systems, 11(1), 127–135. https://doi.org/10.1007/s12555-012-0049-6
[20] Li, T., Zhang, H., Niu, X., & Gao, Z. (2017). Tightly-coupled integration of multi-GNSS singlefrequency RTK and MEMS-IMU for enhanced positioning performance. Sensors, 17(11), 2462. https://doi.org/10.3390/s17112462
[21] Sahli, H., & El-Sheimy, N. (2016). A novel method to enhance pipeline trajectory determination using pipeline junctions. Sensors, 16(4), 567. https://doi.org/10.3390/s16040567
[22] Guan, L., Cong, X., Sun, Y., Gao, Y., Iqbal, U., & Noureldin, A. (2017). Enhanced MEMS SINS aided pipeline surveying system by pipeline junction detection in small diameter pipeline, IFACPapersOnLine, 50(1), 3560–3565. https://doi.org/10.1016/j.ifacol.2017.08.962
[23] Crassidis, J. L., & Junkins, J. L. (2011). Optimal Estimation of Dynamic Systems. CRC press. https://doi.org/10.1201/b11154
[24] Noureldin, A., Karamat, T. B., & Georgy, J. (2012). Fundamentals of Inertial Navigation, Satellite- Based Positioning and their Integration. Springer Science & Business Media. https://doi.org/ 10.1007/978-3-642-30466-8
[25] Xu, L., Li, X. R., Duan, Z., & Lan, J. (2013). Modeling and state estimation for dynamic systems with linear equality constraints. IEEE Transactions on Signal Processing, 61(11), 2927–939. https://doi.org/10.1109/TSP.2013.2255045
Go to article

Authors and Affiliations

Shuo Zhang
1
Stevan Dubljevic
1

  1. University of Alberta, Department of Chemical & Materials Engineering, T6G 2R3 Edmonton, AB, Canada
Download PDF Download RIS Download Bibtex

Abstract

The article discusses "Rules for using the point rating scales for assessing the technical condition and usability of road engineering objects – second edition", which were introduced by the General Directorate for National Roads and Motorways (GDDKiA) Regulation No. 1/2019. The main objective of "Rules..." was to standardize the method of point rating assessment of technical condition and usability, and in the second edition, to take into account the latest construction and material solutions. Because the results of inspections are analyzed and compared not only at the regional but also at the national level, it is very important for all inspectors in the country to evaluate the technical condition and usability in an analogous manner. While developing the 2nd edition, the authors maintained the assumptions of continuity of inspection system, including adaptation to the inspection manuals, algorithms, and software supporting the management of bridges.

Go to article

Authors and Affiliations

L. Janas
A. Kaszyński
E. Michalak
Download PDF Download RIS Download Bibtex

Abstract

Nondestructive and contactless online approaches for detecting defects in polymer films are of significant interest in manufacturing. This paper develops vision-based quality metrics for detecting the defects of width consistency, film edge straightness, and specks in a polymeric film production process. The three metrics are calculated from an online low-cost grayscale camera positioned over the moving film before the final collection roller and can be implemented in real-time to monitor the film manufacturing for process and quality control. The objective metrics are calibrated to correlate with an expert ranking of test samples, and results show that they can be used to detect defects and measure the quality of polymer films with satisfactory accuracy.
Go to article

Authors and Affiliations

Nathir Rawashedeh
1 2
ORCID: ORCID
Paniz Hazaveh
1
Safwan Altarazi
2
ORCID: ORCID

  1. Michigan Technological University, College of Computing, USA
  2. German Jordanian University, School of Applied Technical Sciences, Jordan
Download PDF Download RIS Download Bibtex

Abstract

One of the most hazardous places in mines are longwall areas. They emit a considerable amount of methane to the ventilation air. The emission depends on many but mostly known factors. The article presents the research results on changes in the methane concentration along the longwall excavations and longwall. The distributions were obtained based on a measurement experiment at the ZG Brzeszcze mine in Poland. The author’s research aimed to experimentally determine the concentration of methane as a function of the length of excavation for the longwall excavations and longwall. As a result, methane concentration trends along the excavations were obtained. The conclusions show the pros and cons of the method used, and it allows to set the right direction in the development of measurement systems and sensors.
Go to article

Bibliography

[1] S .R. Deokar, J.S. Wakode, Coal Mine Safety Monitoring and Alerting System. International Research Journal of Engineering and Technology 4, 3, 2146-2149 (2017).
[2] D .A. Jakkan, P. Bhagat, Coal Mine Monitoring System Based on Wireless Technology and ARM . International Journal of Engineering Research 2, 6 (2013).
[3] M . Li, Y. Liu, Underground Coal Mine Monitoring with Wireless Sensor Networks. ACM Trans. Sen. Netw. 5, 1-29 (2009). DOI : https://doi.org/10.1145/1498915.1498916
[4] L . Liao, G. Lou, M. Chen, An Integrated RFID and Sensor System for Emergency Handling in Underground Coal Mines Environments. In J. Zheng, S. Mao, S.F. Midkiff, H. Zhu, (Eds.); Ad Hoc Networks, Springer Berlin Heidelberg 28, 818-824 (2010). DOI : https://doi.org/10.1007/978-3-642-11723-7_56 [5] F . Ma, Sensor Networks-Based Monitoring and Fuzzy Information Fusion System for Underground Gas Disaster. In Proceedings of the 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, 596-600 (2012).
[6] M .A. Moridi, M. Sharifzadeh, Y. Kawamura, H.D. Jang, Development of Wireless Sensor Networks for Underground Communication and Monitoring Systems (the Cases of Underground Mine Environments). Tunneling and Underground Space Technology 73, 127-138 (2018). DOI : https://doi.org/10.1016/j.tust.2017.12.015
[7] A . Zagórecki, Application of Sensor Fusion and Data Mining for Prediction of Methane Concentration in Coal Mines. Mining – Informatics, Automation and Electrical Engineering 43, 4 (2015).
[8] H . Zhao, W. Yang, An Emergency Rescue Communication System and Environmental Monitoring Subsystem for Underground Coal Mine Based on Wireless Mesh Network. Int. J. Distrib. Sens. N. 14, (2018). DOI : https://doi.org/10.1177/1550147718805935
[9] Polish Legal Act, Dz.U. 2017 poz. 1118, Rozporządzenie Ministra Energii z Dnia 23 Listopada 2016 r.
[10] A . Tomczyk, K. Rutecki, Monitorowanie i Kontrola Zmian Ciśnienia Atmosferycznego Kopalni dla Potrzeb Bezpieczeństwa. Mechanizacja i Automatyzacja Górnictwa 47, 7, 99-107 (2009).
[11] S . Wasilewski, Modern Systems of Gas Hazard Monitoring in Polish Hard Coal Mines. Arch. Min. Sci. 53, 4, 511-524 (2008).
[12] H . Badura, D. Araszczuk, Analiza Zagrożenia Metanowego w Ścianie G-6 w Pokładzie 412\lg+\ld i 412\lg w KWK „A” – Studium Przypadku. Przegląd Górniczy 73, 47-55 (2017).
[13] W . Dziurzyński; P. Skotniczny, J. Krawczyk, M. Gawor, T. Pałka, P. Ostrogórski, J. Kruczkowski, J. Janus, Wytyczne Rozmieszczenia Anemometrów Stacjonarnych Wzdłuż Długości Wyrobiska Kopalni jak i w Samym Polu Przekroju Poprzecznego Wyrobiska. In: Zasady pomiarów przepływów powietrza w wyrobiskach kopalnianych. Wybrane sposoby kontroli i kalibracji przyrządów pomiarowych (2017).
[14] J. Kruczkowski, Rozkład Stężeń Metanu w Wyrobiskach Przyścianowych. In Zagrożenia aerologiczne w kopalniach węgla kamiennego – profilaktyka, zwalczanie, modelowanie, monitoring; Główny Instytut Górnictwa (2013).
[15] P. Skotniczny, Transient States in the Flow of the Air-Methane Mixture at the Longwall Outlet, Induced by a Sudden Methane Outflow. Arch. Min. Sci. 59, 4, 887-896 (2014). DOI : https://doi.org/10.2478/amsc-2014-0061
[16] A . Zagórecki, Prediction of Methane Outbreaks in Coal Mines from Multivariate Time Series Using Random Forest. In Proceedings of the Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing; Y. Yao, Q. Hu, H. Yu, J.W. Grzymala-Busse, (Eds.) Springer International Publishing: Cham, 494-500 (2015).
[17] H . Badura, A. Niewiadomski, Jednodniowe prognozy średniego stężenia metanu na wylocie z rejonu wentylacyjnego jako podstawa do doboru środków profilaktyki metanowej – studium przypadku. Przegląd Górniczy 71, 12 (2015).
[18] M . Uszko, L. Kloc, M. Szarafiński, H. Potoczek, Zagrożenia Naturalne w Kopalniach Kompanii Węglowej SA . Część III . Zagrożenie Metanowe. Wiadomości Górnicze 65, 1 (2014).
[19] P. Skotniczny, P. Ostrogórski, Three-Dimensional Air Velocity Distributions in the Vicinity of a Mine Heading’s Sidewall. Arch. Min. Sci. 63, 2, 335-352 (2018). DOI : https://doi.org/10.24425/122451
[20] https://www.wug.gov.pl/english/statistics, accessed: 17.11.2021.
[21] P. Ostrogórski, Sieć Ad Hoc Złożona z Metanomierzy Indywidualnych – Modelowanie i Symulacja. In 10 Szkoła Aerologii Górniczej (2019).
[22] J. Kruczkowski, P. Ostrogórski, Metanoanemometr SOM 2303. In Nowoczesne metody zwalczania zagrożeń aerologicznych w podziemnych wyrobiskach górniczych, Główny Instytut Górnictwa, 117-127 (2015).
Go to article

Authors and Affiliations

Piotr Ostrogórski
1
ORCID: ORCID
Przemysław Skotniczny
1
ORCID: ORCID
Mieczysław Pucka
2

  1. Strata Mechanics Institute, Polish Academy of Sciences, 27 Reymonta Str., 30-059 Kraków, Poland
  2. Tauron Wydobycie S.A. ZG Brzeszcze, ul. Kościuszki 1, 32-620 Brzeszcze, Poland
Download PDF Download RIS Download Bibtex

Abstract

Infrared (IR) reflectography has been used for many years for the detection of underdrawings on panel paintings. Advances in the fields of IR sensors and optics have impelled the wide spread use of IR reflectography by several recognized Art Museums and specialized laboratories around the World. The transparency or opacity of a painting is the result of a complex combination of the optical properties of the painting pigments and the underdrawing material, as well as the type of illumination source and the sensor characteristics. For this reason, recent researches have been directed towards the study of multispectral approaches that could provide simultaneous and complementary information of an artwork. The present work relies on non−simultaneous multispectral inspection using a set of detectors covering from the ultraviolet to the terahertz spectra. It is observed that underdrawings contrast increases with wavelength up to 1700 nm and, then, gradually decreases. In addition, it is shown that IR thermography, i.e., temperature maps or thermograms, could be used simultaneously as an alternative technique for the detection of underdrawings besides the detection of subsurface defects.

Go to article

Authors and Affiliations

A. Bendada
S. Sfarra
C. Ibarra-Castanedo
M. Akhloufi
J.P. Caumes
C. Pradere
J.C. Batsale
Download PDF Download RIS Download Bibtex

Abstract

The level of degradation of reinforced concrete bridges was evaluated based on the in-situ measurements performed on five reinforced concrete bridges under service located in the Czech Republic. The combined effect of carbonation and chlorides with respect to the corrosion of steel reinforcement, namely the pH and the amount of water-soluble chlorides, were evaluated on drilled core samples of concrete. Based on these parameters, the ratio between the concentrations of Cl– and OH, which indicates the ability of concrete to protect reinforcement, was calculated. All the data were statistically summarized and the relationships among them were provided. The main goal of this study is to evaluate the non-proportional effect of the amount of chlorides per mass of concrete on the risk of corrosion initiation and to localize the “critical” locations in the bridges that are the most affected by the degradation effects.

Go to article

Authors and Affiliations

P. Konečný
P. Lehner
D. Vořechovská
M. Šomodíková
M. Horňáková
P. Rovnaníková
Download PDF Download RIS Download Bibtex

Abstract


ZnS-based mechanoluminescent film has been widely used in the fields of stress visualization and stress sensing, due to its high brightness and repeatable stable luminescent characteristics. To evaluate the flexibleelastic deformation performance of ZnS-based mechanoluminescent film, both visual inspection and digital image correlation (DIC) are, respectively, employed for measuring the ZnS-based mechanoluminescent film. ZnS:Cu 2+ mechanoluminescent powders are first mixed with polydimethylsiloxane (PDMS) matrix to produce ZnS:Cu 2+–PDMS mechanoluminescent film. Then, two measurement experiments are, respectively, conducted to investigate the mechanical response and the flexible-elastic deformation performance of the prepared ZnS:Cu2+–PDMS mechanoluminescent film. On one hand, the mechanical response performance of the ZnS:Cu 2+–PDMS mechanoluminescent film is validated by visual monitoring of composite concrete fracture processes. On the other hand, the prepared ZnS:Cu 2+–PDMS mechanoluminescent film is also measured by DIC to obtain its full-field deformations and strains information. The flexible-elastic deformation performance of the ZnS:Cu 2+–PDMS mechanoluminescent film is well demonstrated by the DIC measured results.
Go to article

Authors and Affiliations

Guo-Qing Gu
1 2
Gui-Zhong Xu
1 2
Feng Shen
3
Peng Zhou
4
Hou-Chao Sun
1
Jia-Xing Weng
5

  1. Yancheng Institute of Technology, School of Civil Engineering, Yancheng, 224051, China
  2. Coastal City Low Carbon Construction Engineering Technology Research Center, Yancheng 224056, China
  3. Jiangsu Fiber Composite Company Ltd., Jianhu, Yancheng 224700, China
  4. Yancheng Institute of Supervision & Inspection on Product Quality, Yancheng 224056, China
  5. Jiangsu Water Source Company Ltd. of the Eastern Route of the South-to-North Water Diversion Project, Nanjing 210000, China
Download PDF Download RIS Download Bibtex

Abstract

Bridge inspections are a vital part of bridge maintenance and the main information source for Bridge Management Systems is used in decision-making regarding repairs. Without a doubt, both can benefit from the implementation of the Building Information Modelling philosophy. To fully harness the BIM potential in this area, we have to develop tools that will provide inspection accurate information easily and fast. In this paper, we present an example of how such a tool can utilise tablets coupled with the latest generation RGB-D cameras for data acquisition; how these data can be processed to extract the defect surface area and create a 3D representation, and finally embed this information into the BIM model. Additionally, the study of depth sensor accuracy is presented along with surface area accuracy tests and an exemplary inspection of a bridge pillar column.
Go to article

Bibliography

  1.  J.S. Kong and D.M. Frangopol, “Life-Cycle Reliability-Based Maintenance Cost Optimization of Deteriorating Structures with Emphasis on Bridges”, J. Struct. Eng. 129(6), 818–828 (2003).
  2.  B.M. Phares, G.A. Washer, D.D. Rolander, B.A. Graybeal, and M. Moore, “Routine Highway Bridge Inspection Condition Documentation Accuracy and Reliability”, J. Bridg. Eng. 9(4), 403–413 (2004).
  3.  A. Costin, A. Adibfar, H. Hu, and S.S. Chen, “Building Information Modeling (BIM) for transportation infrastructure – Literature review, applications, challenges, and recommendations”, Autom. Constr. 94, 257–281 (2018).
  4.  “SeeBridge”. [Online]. Available: https://seebridge.net.technion.ac.il/.
  5.  R. Sacks et al., “SeeBridge as next generation bridge inspection: Overview, Information Delivery Manual and Model View Definition”, Autom. Constr. 90, 134–145 (2018).
  6.  P. Hüthwohl, I. Brilakis, A. Borrmann, and R. Sacks, “Integrating RC Bridge Defect Information into BIM Models”, J. Comput. Civ. Eng. 32(3), (2018).
  7.  P. Hüthwohl and I. Brilakis, “Detecting healthy concrete surfaces”, Adv. Eng. Informatics 37, 150–162 (2018).
  8.  P. Hüthwohl, R. Lu, and I. Brilakis, “Multi-classifier for reinforced concrete bridge defects”, Autom. Constr. 105, 102824 (2019).
  9.  R. Lu, I. Brilakis and C. R. Middleton, “Detection of Structural Components in Point Clouds of Existing RC Bridges”, Comput. Civ. Infrastruct. Eng. 34(3), 191–212 (2019).
  10.  R. Lu and I. Brilakis, “Digital twinning of existing reinforced concrete bridges from labelled point clusters”, Autom. Constr. 105, 102837 (2019).
  11.  D. Isailović, V. Stojanovic, M. Trapp, R. Richter, R. Hajdin, and J. Döllner, “Bridge damage: Detection, IFC-based semantic enrichment and visualization”, Autom. Constr. 112, 103088 (2020).
  12.  C.S. Shim, H. Kang, N.S. Dang, and D. Lee, “Development of BIM-based bridge maintenance system for cable-stayed bridges”, Smart Struct. Syst. 20(6), 697–708 (2017).
  13.  N.S. Dang and C.S. Shim, “BIM authoring for an image-based bridge maintenance system of existing cable-supported bridges”, IOP Conf. Ser. Earth Environ. Sci. 143(1), 012032 (2018).
  14.  S. Dang, H. Kang, S. Lon, and S. Changsu, “3D Digital Twin Models for Bridge Maintenance”, 10th Int. Conf. Short Mediu. Span Bridg., 2018, pp. 73.1‒73.9.
  15.  C.S. Shim, N.S. Dang, S. Lon, and C.H. Jeon, “Development of a bridge maintenance system for prestressed concrete bridges using 3D digital twin model”, Struct. Infrastruct. Eng. 15(10), 1319–1332 (2019).
  16.  Z. Ma and S. Liu, “A review of 3D reconstruction techniques in civil engineering and their applications”, Adv. Eng. Informatics 37, 163–174 (2018).
  17.  Q. Wang and M.K. Kim, “Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018”, Adv. Eng. Informatics 39, 306–319 (2019).
  18.  C. Popescu, B. Täljsten, T. Blanksvärd, and L. Elfgren, “3D reconstruction of existing concrete bridges using optical methods”, Struct. Infrastruct. Eng. 15(7), 912–924 (2019).
  19.  S. Izadi et al., “KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera”, in Proceedings of the 24th annual ACM symposium on User interface software and technology – UIST ’11, 2011, p. 559.
  20.  J. Hoła, J. Bień, Ł. Sadowski, and K. Schabowicz, “Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability”, Bull. Polish Acad. Sci. Tech. Sci. 63(1), 87–96 (2015).
  21.  J. Bień, T. Kamiński, and M. Kużawa, “Taxonomy of non-destructive field tests of bridge materials and structures”, Arch. Civ. Mech. Eng. 19(4), 1353–1367 (2019).
  22.  J. Bień, M. Kużawa, and T. Kamiński, “Strategies and tools for the monitoring of concrete bridges”, Struct. Concr. 21(4), 1227–1239 (2020).
  23.  “OpenCV AI Kit”. [Online]. Available: https://www.kickstarter.com/projects/opencv/opencv-ai-kit.
  24.  B. Liu, H. Cai, Z. Ju, and H. Liu, “RGB-D sensing based human action and interaction analysis: A survey”, Pattern Recognit. 94, 1–12 (2019).
  25.  Y.-D. Hong, Y.-J. Kim, and K.-B. Lee, “Smart Pack: Online Autonomous Object-Packing System Using RGB-D Sensor Data”, Sensors 20(16), 4448 (2020).
  26.  M.R. Jahanshahi, F. Jazizadeh, S.F. Masri, and B. Becerik-Gerber, “Unsupervised approach for autonomous pavement-defect detection and quantification using an inexpensive depth sensor”, J. Comput. Civ. Eng. 27(6), 743–754 (2013).
  27.  D. Roca, S. Lagüela, L. Díaz-Vilariño, J. Armesto, and P. Arias, “Low-cost aerial unit for outdoor inspection of building façades”, Autom. Constr. 36, 128–135 (2013).
  28.  C. Bellés and F. Pla, “A Kinect-Based System for 3D Reconstruction of Sewer Manholes”, Comput. Civ. Infrastruct. Eng. 30(11), 906–917 (Nov. 2015).
  29.  M. Abdelbarr, Y.L. Chen, M.R. Jahanshahi, S.F. Masri, W.M. Shen, and U.A. Qidwai, “3D dynamic displacement-field measurement for structural health monitoring using inexpensive RGB-D based sensor”, Smart Mater. Struct. 26(12) (2017).
  30.  Z. Xu, S. Li, H. Li, and Q. Li, “Modeling and problem solving of building defects using point clouds and enhanced case-based reasoning”, Automation in Construction 96(February), 40–54 (2018).
  31.  M. Nahangi, T. Czerniawski, C.T. Haas, and S. Walbridge, “Pipe radius estimation using Kinect range cameras”, Autom. Constr. 99 (March 2017), 197–205 (2019).
  32.  G.H. Beckman, D. Polyzois, and Y.J. Cha, “Deep learning-based automatic volumetric damage quantification using depth camera”, Automation in Construction 99(November 2018), 114–124 (2019).
  33.  H. Kim, S. Lee, E. Ahn, M. Shin, and S.-H. Sim, “Crack identification method for concrete structures considering angle of view using RGB-D camera-based sensor fusion”, Struct. Heal. Monit., 1–13 (2020).
  34.  Intel, “Intel® RealSenseTM Camera D400 series Product Family Datasheet” (2019).
  35.  C. Rother, V. Kolmogorov, and A. Blake, “‘GrabCut’: interactive foreground extraction using iterated graph cuts”, in ACM SIGGRAPH 2004 Papers on – SIGGRAPH ’04, 2004, p. 309.
  36.  Y. Li, J. Sun, C.K. Tang, and H.Y. Shum, “Lazy snapping”, ACM SIGGRAPH 2004 Pap. SIGGRAPH 2004, 303–308 (2004).
  37.  M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models”, Int. J. Comput. Vis. 1(4), 321–331 (Jan. 1988).
  38.  M.A. Fischler and R.C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography”, Commun. ACM 24(6), 381–395 (1981).
  39.  D. Holz and S. Behnke, “Fast Range Image Segmentation and Smoothing Using Approximate Surface Reconstruction and Region Growing”, 2013, 61–73.
  40.  M. Garland and P.S. Heckbert, “Surface simplification using quadric error metrics”, in Proceedings of the 24th annual conference on Computer graphics and interactive techniques – SIGGRAPH ’97, 1997, 209–216.
  41.  Intel, “Intel® RealSenseTM Camera: Depth testing methodology”, 2018.
  42.  B. Wójcik and M. Żarski, “Asesment of state-of-the-art methods for bridge inspection: case study”, Arch. Civ. Eng. 66(4), 343‒362 (2020).
  43.  K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN”, IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 386–397 (2017).
Go to article

Authors and Affiliations

Bartosz Wójcik
1
ORCID: ORCID
Mateusz Żarski
1
ORCID: ORCID

  1. Department of Mechanics and Bridges, Faculty of Civil Engendering, Silesian University of Technology, ul. Akademicka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the ceramic industry, quality control is performed using visual inspection in three different product stages: green, biscuit, and the final ceramic tile. To develop a real-time computer visual inspection system, the necessary step is successful tile segmentation from its background. In this paper, a new statistical multi-line signal change detection (MLSCD) segmentation method based on signal change detection (SCD) method is presented. Through experimental results on seven different ceramic tile image sets, MLSCD performance is analyzed and compared with the SCD method. Finally, recommended parameters are proposed for optimal performance of the MLSCD method.
Go to article

Bibliography

  1.  G.M.A. Rahaman and M. Hossain, “Automatic Defect Detection and Classification Technique from Image: A Special Case Using Ceramic”, Int. J. Comput. Sci Inf. Secur. 1(1), 9 (2009).
  2.  M. Villalon-Hernandez, D. Almanza-Ojeda, and M. Ibarra- Manzano, “Color-Texture Image Analysis for Automatic Failure Detection in Tiles”, in Pattern Recognition, MCPR 2017. Lecture Notes in Computer Science, vol. 10267, pp. 159–168, eds. J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad, and J.A. Olvera-López, Springer International Publishing, Cham, 2017.
  3.  M.H. Karimi and D. Asemani, “Surface defect detection in tiling industries using digital image processing methods: Analysis and evaluation”, ISA Trans. 53(3), 834‒844 (2014).
  4.  F.S. Najafabadi and H. Pourghassem, “Corner defect detection based on dot product in ceramic tile images”, In 2011 IEEE 7th International Colloquium on Signal Processing and its Applications, Penang, Malaysia, 2011, pp. 293–297.
  5.  R. Mishra, C.L. Chandrakar, and R. Mishra, “Surface Defects Detection for Cermaic Tiles Using Image Processing and Morphological Techniques”, Appl. Sci. 2(2), 17 (2012).
  6.  T. Czimmermann et al., “Visual-Based Defect Detection and Classification Approaches for Industrial Applications – A SURVEY”, Sensors 20(5), 1459, (2020).
  7.  V. Lebedev and V. Lempitsky, “Speeding-up convolutional neural networks: A survey”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 799–810 (2018).
  8.  N. Wang, X. Zhao, Z. Zou, P. Zhao, and F. Qi, “Autonomous damage segmentation and measurement of glazed tiles in historic buildings via deep learning”, Comput.-Aided Civil Infrastruct. Eng. 35(3), 277–291 (2020).
  9.  X. Gu and Y. Sun, “Image analysis of ceramic burning based on cellular automata”, EURASIP J. Image Video Process. 2018(1), 110 (2018).
  10.  T. Matić, I. Vidović, and Ž. Hocenski, “Real Time Contour Based Ceramic Tile Edge and Corner Defects Detection”, Teh. Vjesn.-Technical Gazette 20(6), 8 (2013).
  11.  Ž. Hocenski, T. Keser, and A. Baumgartner, “A Simple and Efficient Method for Ceramic Tile Surface Defects Detection”, In 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 2007, pp. 1606–1611.
  12.  T. Matić, I. Aleksi, and Ž. Hocenski, “CPU, GPU and FPGA Implementations of MALD: Ceramic Tile Surface Defects Detection Algorithm”, Automatika 55(1), 9–21 (2014).
  13.  J. Zhuang, L. Yang, and J. Li, “An Improved Segmentation Algorithm Based on Superpixel for Typical Industrial Applications”, In 2018 11th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 2018, pp. 366–370.
  14.  X. Zhou, Y. Wang, Q. Zhu, J. Mao, C. Xiao, X. Lu, and H. Zhang, “A Surface Defect Detection Framework for Glass Bottle Bottom Using Visual Attention Model and Wavelet Transform”, IEEE Trans. Ind. Inform. 16(4), 2189–2201 (2020).
  15.  X. Yan, L. Wen, and L. Gao, “A Fast and Effective Image Preprocessing Method for Hot Round Steel Surface”, Math. Probl. Eng., 2019, 1–14 (2019).
  16.  R. Cunha et al., Applying Non-destructive Testing and Machine Learning to Ceramic Tile Quality Control”, In 2018 VIII Brazilian Symposium on Computing Systems Engineering (SBESC), Salvador, Brazil, 2018, pp. 54–61.
  17.  T. Matić, I. Aleksi, Ž. Hocenski, and D. Kraus, “Real-time biscuit tile image segmentation method based on edge detection”, ISA Transactions 76, 246–254 (2018).
  18.  S.M. Kay, Fundamentals of Statistical Signal Processing: Practical Algorithm Development, Prentice-Hall PTR, 2013.
  19.  L.G. Shapiro and R.M. Haralick, Computer and Robot Vision, Addison-Wesley Publishing Company, 1992.
  20.  Z. Hocenski and T. Keser, “Failure detection and isolation in ceramic tile edges based on contour descriptor analysis”, In 2007 Mediterranean Conference on Control & Automation, Athens, Greece, 2007, pp. 1–6.
  21.  R.C. Gonzalez and R.E.Woods, Digital Image Processing, Pearson, 2018.
  22.  Ž. Hocenski, T. Matić, and I. Vidović, “Technology transfer of computer vision defect detection to ceramic tiles industry”, In 2016 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 2016, pp. 301–305.
  23.  M. Montorsi, C. Mugoni, A. Passalacqua, A. Annovi, F. Marani, L. Fossa, R. Capitani, and T. Manfredini, “Improvement of color quality and reduction of defects in the ink jet-printing technology for ceramic tiles production: A design of experiments study”, Ceram. Int. 42(1, Part B), 1459–1469 (2016).
  24.  The GIMP Development Team. GIMP, 2019.
  25.  A.Z. Arifin and A. Asano, “Image Segmentation by Histogram Thresholding Using Hierarchical Cluster Analysis”, Pattern Recognit. Lett., 27(13), 1515–1521 (2006).
Go to article

Authors and Affiliations

Filip Sušac
1
Tomislav Matić
1
Ivan Aleksi
1
Tomislav Keser
1

  1. J. J. Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Kneza Trpimira 2B, 31000 Osijek, Croatia
Download PDF Download RIS Download Bibtex

Abstract

Despite the progress in digitization of civil engineering, the process of bridge inspection is still outdated. In most cases, its documentation consists of notes, sketches and photos. This results in significant data loss during structure maintenance and can even lead to critical failures. As a solution to this problem, many researchers see the use of modern technologies that are gaining popularity in civil engineering. Namely Building Information Modelling (BIM), 3D reconstruction and Artificial Intelligence (AI). However, despite their work, no particular solution was implemented. In this article, we evaluated the applicability of state-of-the-art methods based on a case study. We have considered each step starting from data acquisition and ending on BIM model enrichment. Additionally, the comparison of deep learning crack semantic segmentation algorithm with human inspector was performed. Authors believe that this kind of work is crucial for further advancements in the field of bridge maintenance.

Go to article

Authors and Affiliations

Bartosz Wójcik
ORCID: ORCID
Mateusz Żarski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Deterioration and defects in building components are key aspects to consider when assessing buildings’ conditions, as they may influence the building’s functionality. The typical defects include cracking, moisture, dampness, and architectural defects. This paper aims to evaluate the defects in a building using a non-destructive testing (NDT), which is the Infrared Thermography (IRT) method. A visual inspection method is then conducted to verify the results of the IRT method. The combination of IRT and visual inspection methods can identify the type of defect and level of severity more accurately. In both methods, ratings or scores are given to the collected defect data to determine the consistency between them. Two (2) buildings were selected as case studies; AA1 and BB2 are multistorey buildings. From those, 51 and 67 spots were taken from the IRT method and further verification process, respectively. Among the defects that were found were moisture, dampness, cracking, staining, chipping, and flaking paint. From all the findings, IRT was found to be comparable with the visual inspection results for serious defects such as cracking and flaking paint. However, IRT was believed to underestimate the architectural defects of staining and chipping. Even so, serious defects such as dampness were also underestimated in IRT due to the fact that the temperature difference between different ratings will not differ much. In conclusion, the IRT method has the potential to be used as a tool for building condition rating. However, it should be assisted with a visual inspection, and more research needs to be conducted for its practicality.
Go to article

Authors and Affiliations

Muhd Zubair Tajol Anuar
1
ORCID: ORCID
Noor Nabilah Sarbini
1
ORCID: ORCID
Izni Syahrizal Ibrahim
1
ORCID: ORCID
Siti Hajar Othman
2
ORCID: ORCID
Mohd Nadzri Reba
3
ORCID: ORCID

  1. Department of Structure & Materials, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  2. School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  3. Geoscience & Digital Earth Centre (Insteg), Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

This study investigates image processing techniques for detecting surface cracks in spring steel components, with a focus on applications like Magnetic Particle Inspection (MPI) in industries such as railways and automotive. The research details a comprehensive methodology that covers data collection, software tools, and image processing methods. Various techniques, including Canny edge detection, Hough Transform, Gabor Filters, and Convolutional Neural Networks (CNNs), are evaluated for their effectiveness in crack detection. The study identifies the most successful methods, providing valuable insights into their performance. The paper also introduces a novel batch processing approach for efficient and automated crack detection across multiple images. The trade-offs between detection accuracy and processing speed are analyzed for the Morphological Top-hat filter and Canny edge filter methods. The Top-hat method, with thresholding after filtering, excelled in crack detection, with no false positives in tested images. The Canny edge filter, while efficient with adjusted parameters, needs further optimization for reducing false positives. In conclusion, the Top-hat method offers an efficient approach for crack detection during MPI. This research offers a foundation for developing advanced automated crack detection system, not only to spring sector but also extends to various industrial processes such as casting and forging tools and products, thereby widening the scope of applicability.
Go to article

Bibliography

[1] Gubeljak, N., Predan, J., Senčič, B. & Chapetti, M. (2014). Effect of residual stresses and inclusion size on fatigue resistance of parabolic steel springs. Materials Testing. 56(4), 312-317. DOI:10.3139/120.110567.
[2] Xu, C., Yilong L., Ming Y., Jiabang Y. & Xiang P. (2021). Effects of the ultra-sonic assisted surface rolling process on the fatigue crack initiation position distribution and fatigue life of 51CrV4 spring steel. Materials. 14(10), 2565, 1-19. DOI:10.3390/ma14102565.
[3] Yun, J.P., Choi, Dc., Jeon, Yj. et al., (2014). Defect inspection system for steel wire rods produced by hot rolling process. The International Journal of Advanced Manufacturing Technology. 70, 1625-1634. DOI:10.1007/s00170-013-5397-8.
[4] Perichiyappan, S. & Jagadeesha, T. (2021). Modelling and simulation of primary suspension springs used in Indian railways. Materials Today: Proceedings. 46(17), 8450-8454. DOI: 10.1016/j.matpr.2021.03.478.
[5] Kumar, S., Kumar, V., Nandi, R.K. et al. (2008). Investigation into surface defects arising in hot-rolled SUP 11A grade spring billets. Journal of Failure Analysis and Prevention. 8(6), 492-497. DOI:10.1007/s11668-008-9169-y.
[6] Filipović, M., Eriksson, C. & Överstam, H. (2006). Behaviour of surface defects in wire rod rolling. Steel research international. 77(6), 439-444, DOI:10.1002/srin.200606411.
[7] Matjeke, V.J., Van Der Merwe, J.W., Mukwevho, G. & Phasha, M.J. (2019). Thermal characteristics of spring steels used in railway bogies. SN Applied Sciences. 1, 1548, 1-8. DOI:10.1007/s42452-019-1546-5.
[8] Nagumo, Y., Tanifuji, K. & Imai, J. (2010). A basic study on wheel flange climbing using model wheelset. International Journal of Railway. 3(2), 60-67. DOI:10.1299/kikaic.74.242.
[9] The Rail Safety Inspection Office. (2021). Accident and incident investigation report: Derailment of the regional passenger train No. 21209 between Chvalkov and Vcelnicka operating control points. Retrieved November 7, 2023, from https://www.dicr.cz/files/uploads/Zpravy/MU/DI_Chvalkov_Vcelnicka_210715.pdf.
[10] Maass, M., Deutsch, W.A., Bartholomai, F. (2014). Magnetic Particle Inspection on train components. In 11th European Conference on Non-Destructive Testing, 6-11 October 2014 (pp. 1-9). Prague, Czech Republic.
[11] Deng, J., Singh, A., Zhou, Y., Lu, Y. & Lee, V.C.S. (2022). Review on computer vision-based crack detection and quantification methodologies for civil structures. Construction and Building Materials. 356, 129238. DOI:10.1016/j.conbuildmat.2022.129238.
[12] Mohan, A. & Poobal, S. (2018). Crack detection using image processing: A critical review and analysis. Alexandria Engineering Journal. 57(2), 787-798. DOI:10.1016/j.aej.2017.01.020.

Go to article

Authors and Affiliations

Marcin M. Marciniak
1

  1. Rzeszow University of Technology, Poland

This page uses 'cookies'. Learn more