Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 50
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to present an assessment of the slip influence on the deflection of the steel plate-concrete composite beams, which are a new type of a design concept. The proposed method is based on the procedure included in the PN-EN 1992-1-1, which has been modified with taking into consideration interface slip. The theoretical analysis was verified by experimental studies.

Go to article

Authors and Affiliations

D. Kisała
K. Furtak
Download PDF Download RIS Download Bibtex

Abstract

The tale of human progress is also a story of advancements in media technologies. But should we necessarily greet the changes now on the horizon with optimism?
Go to article

Authors and Affiliations

Piotr Celiński
1

  1. Maria Curie-Skłodowska University in Lublin
Download PDF Download RIS Download Bibtex

Abstract

Brain research is enabling us to stretch the very limits of human cognition. However, exploring the mysteries of the brain has limits of its own, many of which we are still struggling to overcome.
Go to article

Authors and Affiliations

Piotr Durka
1
Krystian Dereziński
2

  1. Faculty of Physics, University of Warsaw
  2. Faculty of Philosophy and Social Sciences, Nicolaus Copernicus University in Toruń
Download PDF Download RIS Download Bibtex

Abstract

Convenient human-computer interaction is essential to carry out many exhausting and concentration-demanding activities. One of them is cyber-situational awareness as well as dynamic and static risk analysis. A specific design method for a multimodal human-computer interface (HCI) for cyber-security events visualisation control is presented. The main role of the interface is to support security analysts and network operators in their monitoring activities. The proposed method of designing HCIs is adapted from the methodology of robot control system design. Both kinds of systems act by acquiring information from the environment, and utilise it to drive the devices influencing the environment. In the case of robots the environment is purely physical, while in the case of HCIs it encompasses both the physical ambience and part of the cyber-space. The goal of the designed system is to efficiently support a human operator in the presentation of cyberspace events such as incidents or cyber-attacks. Especially manipulation of graphical information is necessary. As monitoring is a continuous and tiring activity, control of how the data is presented should be exerted in as natural and convenient way as possible. Hence two main visualisation control modalities have been assumed for testing: static and dynamic gesture commands and voice commands, treated as supplementary to the standard interaction. The presented multimodal interface is a component of the Operational Centre, which is a part of the National Cybersecurity Platform. Creation of the interface out of embodied agents proved to be very useful in the specification phase and facilitated the interface implementation.

Go to article

Authors and Affiliations

W. Kasprzak
W. Szynkiewicz
M. Stefańczyk
W. Dudek
M. Węgierek
D. Seredyński
M. Figat
C. Zieliński
Download PDF Download RIS Download Bibtex

Abstract

Marine sediments with rapid oxic/anoxic transitions are difficult to monitor in real time. Organic overload that may lead to anoxia and buildup of hydrogen sulfide can be caused by a variety of factors such as sewage spills, harbor water stagnation, algal blooms and the vicinity of aquaculture operations. We have tested a novel multiprobe technology (named SPEAR) on marine sediments to evaluate its performance in monitoring sediments and overlaying water. Our results show the ability of the SPEAR probes to distinguish electrochemical changes at 2-3 mm scale and at hourly cycles. SPEAR probes have the ability to identify redox interfaces and redox transition zones in sediments, but do not use micromanipulators (which are cumbersome in field and underwater applications). We propose that the best target habitats for SPEAR-type monitoring are rapidly evolving muddy deposits and sediments near aquaculture operations where pollution with organics stresses the ecosystem.
Go to article

Authors and Affiliations

R. Popa
1
ORCID: ORCID
I.C. Moga
1
ORCID: ORCID
K.H. Nealson
2
ORCID: ORCID
V.M. Cimpoiasu
3
ORCID: ORCID

  1. DFR Systems SRL, R&D Department, Bucharest, Romania
  2. University of Southern California, Los Angeles, 90089, USA
  3. University of Craiova, Biology and Environmental Engineering Department, Frontier Biology and Astrobiology Research Center, Craiova, 200585, Romania
Download PDF Download RIS Download Bibtex

Abstract

Comb transducers are applied in ultrasonic testing for generation of Rayleigh or Lamb waves by scattering of the incident bulk waves onto surface waves at the periodic comb-substrate interface. Hence the transduction efficiency, although rarely discussed in literature, is an important factor for applications determining the quality of the measured ultrasonic signals. This paper presents the full-wave theory of comb transducers concluded by evaluation of their efficiency for a couple of examples of standard and certain novel configurations.

Go to article

Authors and Affiliations

Eugeniusz Danicki
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the Reynolds transport theorem (RTT) for three phase systems is developed, in terms associated with a moving control volume. The basic tools applied to the derivation are the generalized transport theorem by Truesdell and Toupin, and generalized surface transport theorem by Aris as well as Slattery. The final results referenced to a generic extensive quantity demonstrate the theorem in the integral instantaneous form. As a further illustration of applicability of the theorem relation developed some specific forms are deduced from such as for multiphase systems in terms of fixed control volume, surface systems and homogeneous spatial systems.

Go to article

Authors and Affiliations

Teodor Skiepko
Download PDF Download RIS Download Bibtex

Abstract

Casting process takes a major percentage of manufacturing products into consideration. No-bake casting is swiftly developing technology for foundry industries. In the no-bake family, furan no-bake casting process employs resins and acid catalyst to form a furan binder system. However, this process configures castings with augmented strength and quality surface finish. Compressive strength, transverse strength and tensile strength of moulds are also high in this furan binder system. Hence this method is apt for producing accurately dimensioned castings. Our well thought-out deliberations in the subsequent write up entail the numerous effects of variation of resin and acid catalyst on the surface defect i.e. sulfur diffusion on the surface of FNB casting. Furan resin; used in the production of casting is furfuryl alcohol and acid catalyst is sulphonic acid. Sulfur diffusion is tested by Energy-dispersive X-ray spectroscopy (EDX) analysis and also by the spectrometer with jet stream technology. This paper also comprises economic advantages of optimizing resin because furan resin is expensive and catalyst with reduction of sulfur diffusion defect as it saves machining, labor cost, and energy.

Go to article

Authors and Affiliations

M.V. Sheladiya
S.G. Acharya
K. Mehta
G.D. Acharya
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a procedure for correction of the error of an ECG signal, introduced by the skin-electrode interface. This procedure involves three main measuring-calculating stages: parametrical identification of the mathematical model of the interface, realized directly before the diagnostic measurements, registration of the signal at the output of electrodes as well as reconstruction of the input signal of the interface.

The first two stages are realized in the on-line mode, whereas the operation of signal reconstruction presents a numerical task of digital signal processing and is realized in the off-line mode through deconvolution of the registered signal with the transfer function of the skin-electrode interface.

The aim of the paper is to discuss in detail the procedure of parametric identification of the skin-electrode interface with the use of a computer system equipped with a DAQ card and LabVIEW software. The algorithm for error correction introduced by this interface is also presented.

Go to article

Authors and Affiliations

Krzysztof Tomczyk
Download PDF Download RIS Download Bibtex

Abstract

Direct sensor-to-microcontroller is a simple approach for direct interface of passive modulating sensors to a microcontroller without any active components in between the sensor and the microcontroller and without an analog to digital converter. The metrological performances of such interface circuits are limited by certain microcontroller parameters which are predetermined by the manufacturing technology. These limitations can be improved by specific hardware-related techniques and can improve the accuracy, speed and resolution of the measurements. Such hardware solutions as well as proper selection of the electrical components are addressed in this paper. It has been shown that employment of only a few MOSFET transistors can reduce the maximal relative error of single point calibration more than fifteen times and can increase the measuring speed around 30 % in all calibration techniques in the measurement range of PT1000 resistive temperature sensors. Moreover, the effective number of resolution bits increases by more than 1.3 bits when using an external comparator.

Go to article

Authors and Affiliations

Zivko Kokolanski
Cvetan Gavrovski
Vladimir Dimcev
Mario Makraduli
Download PDF Download RIS Download Bibtex

Abstract

The carriage of pathogenic Leptospira was investigated by PCR in 51 wild carnivores, 20 domestic dogs with outdoor access, and 27 free-roaming domestic cats sampled in periurban Barcelona (NE Spain). Overall prevalence was 7.7%, with DNA confirmed in 3/30 common genets (Genetta genetta) (serovars Icterohaemorraghiae and Sejröe), 1/9 red foxes (Vulpes vulpes) (Canicola) and 2/27 cats (Icterohaemorraghiae). Though most of the dogs were vaccinated against Leptospira, DNA of the serovar Canicola was detected in the urine of 25% of the vaccinated animals, and the serovar Icterohaemorraghiae in one non-vaccinated dog.

Go to article

Authors and Affiliations

J. Millán
R. Velarde
A.D. Chirife
L. León-Vizcaíno
Download PDF Download RIS Download Bibtex

Abstract

Soldiers are the backbone of any armed force. They usually lose their lives due to the lack of medical assistance in emergency situations. Furthermore, army bases face problems due to the inability to track soldiers’ locations in the field. Hence, this paper proposes an interactive graphical user interface module (IGUIM) for soldiers’ bioinformatics acquisition and emergency reaction during combat, a global positioning system (GPS) is used to track soldiers’ locations through a device carried by the soldier. Soldiers’ bioinformatics are gathered using health monitoring biosensors, bidirectional communication between the soldiers and the army base is established via a global system for mobile (GSM). The proposed interactive module aims to enumerate the soldiers on the battlefield within a database that easily facilitates health monitoring, position tracking and bidirectional communication with each soldier through their identification number. The proposed IGUIM will increase the rate of soldiers’ survival in emergencies, which contributes to preserving the human resources of the army during combat.
Go to article

Authors and Affiliations

Wesam F. Swedan
1
Huthifa A. Al_Issa
1
Ayat Aloqoul
1
Hadeel Alkofahi
1
Rahaf Obeidat
1

  1. Department of Electrical Engineering, Al-Huson University College, Al Balqa Applied University, Jordan
Download PDF Download RIS Download Bibtex

Abstract

The most common means to analyze redox gradients in sediments is by push/pulling electrochemical probes through sediment’ strata while repeating measurements. Yet, as electrodes move up and down they disrupt the texture of the sediment layers thus biasing subsequent measurements. This makes it difficult to obtain reproducible measurements or to study the evolution of electrochemical gradients. One solution for solving this problem is to eliminate actuators and electrode movements altogether, while instead deploying probes with numerous electrodes positioned at various depths in the sediment. This mode of operation requires electrode switching. We discuss an electrode-switching solution for multi-electrode probes, based on Complementary Metal-Oxide-Semiconductor (CMOS) multiplexors. In this solution, electrodes can be individually activated in any order, sequence or time frame through digital software commands. We discuss constraints of CMOS-based multilayer electrochemical probes during cyclic voltammetry.
Go to article

Authors and Affiliations

V.M. Cimpoiasu
1
ORCID: ORCID
F. Radulescu
2
K.H. Nealson
3
ORCID: ORCID
I.C. Moga
4
ORCID: ORCID
R. Popa
4
ORCID: ORCID

  1. University of Craiova, Frontier Biology and Astrobiology Research Center, Biology and Environmental Engineering Department, Craiova, 200585, Romania
  2. Portland, OR, 97229
  3. University of Southern California, Department of Biological Sciences, 3616, Trousdale Parkway, Los Angeles, 90089, USA
  4. DFR Systems SRL, R&D Department, Bucharest, Romania
Download PDF Download RIS Download Bibtex

Abstract

Diffusion multiple method was applied to investigate the alloying elements distribution and interface diffusion reactions in Co-Al-X system, in order to accelerate the alloy development. The diffusion regions of Co-Al-X system at 1173 K were investigated by scanning electron microscope (SEM) and nanoindentation. SEM images show that phases of Co-Al-Ni diffusion interface consisted of β-CoAl + γ Co, γ Co, γ + γ'-(Co, Ni)3Al and γ Ni, while Co-Al-Cr diffusion interface is shaped with δ + γ + β, γ and σ region. TiNiX diffusion layer with high Ni-content was formed in Co-Al-Ti diffusion interface. The diffusion layers during diffusion multiple play an important role in mechanical properties in these alloying systems. The γ + γ' diffusion layer in Co-Al-Ni diffusion interface presented the best comprehensive performance, while the highest hardness (17.48 GPa) was confirmed in Co-Al-Cr diffusion interface due to a large number of brittle phases. Darken method was applied to determine the interdiffusion coefficients of alloying elements in pseudo-binary phase, accordingly the diffusion capacities of alloying elements can be ordered as Al > Ni > Cr in Co-based alloys.
Go to article

Authors and Affiliations

Hang Shang
1 2
ORCID: ORCID
Qiuzhi Gao
1 2
ORCID: ORCID
Yujiao Jiang
1 2
ORCID: ORCID
Qingshuang Ma
1 2
ORCID: ORCID
Huijun Li
3
ORCID: ORCID
Hailian Zhang
4
ORCID: ORCID

  1. Northeastern University at Qinhuangdao, School of Resources and Materials, Qinhuangdao, 066004, China
  2. Northeastern University, Shenyang, School of Materials Science and Engineering, 110819, China
  3. Tianjin University, School of Materials Science & Engineering, Tianjin, 300354, China
  4. Daotian High Technology Co., Ltd., Qinhuangdao, 066004, China
Download PDF Download RIS Download Bibtex

Abstract

Consecutive casting of bimetallic applies consecutive sequences of pouring of two materials into a sand mold. The outer ring is made of NiHard1, whereas the inner ring is made of nodular cast iron. To enable a consecutive sequence of pouring, an interface plate made of low carbon steel was inserted into the mold and separated the two cavities. After pouring the inner material at the predetermined temperature and the interface had reached the desired temperature, the NiHard1 liquid was then poured immediately into the mold. This study determines the pouring temperature of nodular cast iron and the temperature of the interface plate at which the pouring of white cast iron into the mold should be done. Flushing the interface plate for 2 seconds by flowing nodular cast iron liquid as inner material generated a diffusion bonding between the inner ring and interface plate at pouring temperatures of 1350 °C, 1380 °C, and 1410 °C. The interface was heated up to a maximum temperature of 1242 °C, 1260 °C, and 1280 °C respectively. The subsequent pouring of white cast iron into the mold to form the outer ring at the interface temperature of 1000 °C did not produce a sufficient diffusion bonding. Pouring the outer ring at the temperature of 1430°C and at the interface plate temperature of 1125 °C produced a sufficient diffusion bonding. The presence of Fe3O2 oxide on the outer surface of the interface material immediately after the interface was heated above 900 ⁰C has been identified. Good metallurgical bonding was achieved by pouring the inner ring at the temperature of 1380°C, interface temperature of 1125 °C and then followed by pouring of the outer ring at 1430⁰C and flushing time of 7 seconds.

Go to article

Authors and Affiliations

W. Purwadi
B. Bandanadjaja
D. Idamayanti
N. Lilansa
Download PDF Download RIS Download Bibtex

Abstract

Carbon nanotubes (CNTs) are a good reinforcement for metal matrix composite materials; they can significantly improve the mechanical, wear-resistant, and heat-resistant properties of the materials. Due to the differences in the atomic structure and surface energy between CNTs and aluminum-based materials, the bonding interface effect that occurs when nanoscale CNTs are added to the aluminum alloy system as a reinforcement becomes more pronounced, and the bonding interface is important for the material mechanical performance. Firstly, a comparative analysis of the interface connection methods of four CNT-reinforced aluminum matrix composites is provided, and the combination mechanisms of various interface connection methods are explained. Secondly, the influence of several factors, including the preparation method and process as well as the state of the material, on the material bonding interface during the composite preparation process is analyzed. Furthermore, it is explained how the state of the bonding interface can be optimized by adopting appropriate technical and technological means. Through the study of the interface of CNT-reinforced aluminum-based composite materials, the influence of the interface on the overall performance of the composite material is determined, which provides directions and ideas for the preparation of future high-performance CNT-reinforced aluminum-based composite materials.
Go to article

Bibliography

[1] Shao, H.Q. & Li, Q. J. (2020). Effect of stirring casting process parameters on properties of aluminum matrix composites for mechanical shield. Hot Working Technology. 23, 67-69+75.
[2] Krishna, A.R., Arun, A., Unnikrishnan, D. & Shankar. K.V. (2018). An investigation on the mechanical and tribological properties of alloy A356 on the addition of WC. Materials Today: Proceedings. 5(5), 12349-12355. DOI: 10.1016/j.matpr.2018.02.213.
[3] Joseph, J., Pillai, B.S., Jayanandan, J., Jayagopan, J., Nivedh, S., Balaji, U.S.S. & Shankar, K.V. (2021). Mechanical behaviour of age hardened A356/TiC metal matrix composite. Materials Today: Proceedings. 38, 2127-2132. DOI: 10.1016/j.matpr.2020.05.013.
[4] Kumar, V.A., Kumar, V.V.V., Menon, G.S., Bimaldev, S., Sankar, M., Shankar, K.V. & Balachandran, M. (2020). Analyzing the effect of B4C/Al2O3 on the wear behavior of Al-6.6Si-0.4Mg alloy using response surface methodology. International Journal of Surface Engineering and Interdisciplinary Materials Science. 8(2). 66-79. DOI: 10.4018/ijseims.2020070105.
[5] Anilkumar, V., Shankar, K.V., Balachandran, M., Joseph, J., Nived, S., Jayanandan, J., Jayagopan, J. & Surya Balaji, U.S. (2021). Impact of heat treatment analysis on the wear behaviour of Al-14.2Si-0.3Mg-TiC composite using response surface methodology. Tribology in industry. 43(3), 590-602. DOI: 10.24874/ti.988.10.20.04.
[6] Zhao, S., Liu, Z., &.Zhang, X. B. (2006). Technical process and mechanical properties of carbon nanotubes reinforced aluminium matrix composites. Foundry Technology. 2, 135-138.
[7] Nam, D.H., Cha, S.I., Lim, B.K,, Park, H.M., Han, D.S. & Hong, S.H. (2012). Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al–Cu composites. Carbon. 50(7), 2417-2423. DOI: 10.1016/j.carbon. 2012.01.058.
[8] Sun, Y.G., Liu, P., Chen, X.H., Liu, X.K., Li, W., Ma, F.C. & He, D,H. (2012). Present situation of carbon nano-tube reinforced aluminum composite. Material & Heat Treatment. 41(24), 137-139+144.
[9] Bakshi, S.R. & Agarwal, A. (2011). An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon. 49(2), 533-544. DOI: 10.1016/j.carbon.2010.09.054.
[10] Nai, M.H., Wei, J. & Gupta, M. (2014). Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites. Materials & Design. 60, 490-495. DOI: 10.1016/j.matdes.2014.04.011.
[11] Fan, T.X., Liu, Y., Yang, K.M., Song, J. & Zhang, D. (2019). Research progress on the optimization of the interface structure of carbon/metal composites and the interface mechanism. Acta Metall Sinica. 55(1), 16-32.
[12] Cao, L., Chen, B., Guo, B.S. & Li, J.S. (2021). A review of carbon nanotube dispersion methods in carbon nanotube reinforced aluminium matrix composites manufacturing process. Journal of Netshape Forming Engineering. 13(3), 9-24. DOI: 10.3969/j.issn.1674-6457.2021.03.002.
[13] Chen, B., Li, S., Imai, H., Jia, L., Umeda, J., Takahashi, M. & Kondoh, K. (2015). Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests. Composites Science and Technology. 113, 1-8. DOI: 10.1016/j.compscitech.2015.03.009.
[14] Pérez-Bustamante, R., Pérez-Bustamante, F., Estrada-Guel, I., Licea-Jiménez, L., Miki-Yoshida, M. & Martínez-Sánchez, R. (2013). Effect of milling time and CNT concentration on hardness of CNT/Al2024 composites produced by mechanical alloying. Materials Characterization. 75, 13-19. DOI: 10.1016/j.matchar.2012.09.005.
[15] Shi, G. (2012). The study of coated carbon nanotube and reinforced magnesium matrix composites. Lanzhou University of Technolofy, Lanzhou, China.
[16] Aravind Senan, V.R., Anandakrishnan, G., Rahul, S.R., Reghunath, N. & Shankar, K.V. (2020). An investigation on the impact of SiC/B4C on the mechanical properties of Al-6.6Si-0.4Mg alloy. Materials Today: Proceedings. 26, 649-653. DOI: 10.1016/j.matpr.2019.12.359.
[17] Rohith, K.P., Sajay Rajan, E., Harilal, H., Jose, K. & Shankar, K.V. (2018).Study and comparison of A356-WC composite and A356 alloy for an off-road vehicle chassis. Materials Today: Proceedings. 5(11), 25649-25656. DOI: 10.1016/j.matpr.2018.11.006.
[18] Jiang, L., Wen, H., Yang, H., Hu, T., Topping, T., Zhang, D., Lavernia, E.J. & Schoenung, J.M. (2015). Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix. Acta Materialia. 89, 327-343. DOI: 10.1016/j.actamat.2015.01.062.
[19] Aravind Senan, V.R., Akshay, M.C., & Shankar, K.V. (2019). Determination on the effect of Al2O3 / B4B on the mechanical behaviour of al-6.6si-0.5mg alloy cast in permanent mould. Materials Science Forum. 969, 398-403. DOI: 10.4028/www.scientific.net/MSF.969.398.
[20] Truong. H.T.X., Lagoudas, D,C., Ochoa, O.O. & Lafdi, K. (2013). Fracture toughness of fiber metal laminates: Carbon nanotube modified Ti–polymer–matrix composite interface. Journal of Composite Materials. 48(22), 2697-2710. DOI: 10.1177/0021998313501923.
[21] Trinh, P,V., Luan, N.V., Phuong, D.D., Minh. P. N., Weibel, A., Mesguich, D. & Laurent, C. (2018) Microstructure, microhardness and thermal expansion of CNT/Al composites prepared by flake powder metallurgy. Composites Part A: Applied Science and Manufacturing. 105, 126-137. DOI: 10.1016/j.compositesa.2017.11.022.
[22] Laha, T., Chen, Y., Lahiri, D. & Agarwal, A. (2009). Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Composites Part A: Applied Science and Manufacturing. 40(5), 589-594. DOI: 10.1016/j.compositesa.2009.02.007.
[23] Bakshi, S.R., Singh, V., Seal, S. & Agarwal, A. (2009). Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surface and Coatings Technology. 203(10-11), 1544-1554. DOI: 10.1016/j.surfcoat.2008.12.004.
[24] Liu, Z.Y., Xiao, B.L., Wang, W.G. & Ma, Z.Y. (2013). Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling. Carbon. 62, 35-42. DOI: 10.1016/j.carbon.2013.05.049.
[25] Yang, X., Liu, E., Shi, C., He, C., Li, J., Zhao, N. & Kondoh, K. (2013). Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility. Journal of Alloys and Compounds. 563, 216-220. DOI: 10.1016/j.jallcom.2013.02.066.
[26] Gao, M., Gao, P., Wang, Y., Lei, T. & Ouyang. C. (2020). Study on metallurgically prepared copper-coated carbon fibers reinforced aluminum matrix composites. Metals and Materials International. 12. DOI: 10.1007/s12540-020-00897-1.
[27] Li, S., Su, Y., Zhu, X., Jin, H., Ouyang, Q. & Zhang, D. (2016). Enhanced mechanical behavior and fabrication of silicon carbide particles covered by in-situ carbon nanotube reinforced 6061 aluminum matrix composites. Materials & Design. 107, 130-138. DOI: 10.1016/j.matdes.2016.06.021.
[28] Mansoor, M., Khan, S., Ali, A. & Ghauri, K.M. (2019). Fabrication of aluminum-carbon nanotube nano-composite using aluminum-coated carbon nanotube precursor. Journal of Composite Materials. 53(28-30), 4055-4064. DOI: 10.1177/0021998319853341.
[29] Kucukyildirim, B.O. & Eker, A.A. (2012). Fabrication and mechanical properties of CNT/6063Al composites prepared by vacuum assisted infiltration technique using CNT-Al preforms. Advanced Composites Letters. 133(1), 125-130.
[30] Kang, K., Bae, G., Kim, B. & Lee, C. (2012). Thermally activated reactions of multi-walled carbon nanotubes reinforced aluminum matrix composite during the thermal spray consolidation. Materials Chemistry and Physics. 133(1), 495-499. DOI: 10.1016/j.matchemphys.2012.01.071.
[31] Isaza, M.C.A., Ledezma Sillas, J.E., Meza, J.M. & Herrera Ramírez, J.M. (2016). Mechanical properties and interfacial phenomena in aluminum reinforced with carbon nanotubes manufactured by the sandwich technique. Journal of Composite Materials. 51(11), 1619-1629. DOI: 10.1177/0021998316658784.
[32] Kurita, H., Estili, M., Kwon, H., Miyazaki, T., Zhou, W., Silvain, J-F. & Kawasaki, A. (2015). Load-bearing contribution of multi-walled carbon nanotubes on tensile response of aluminum. Composites Part A: Applied Science and Manufacturing. 68, 133-139. DOI: 10.1016/j.compositesa.2014.09.014.
[33] Shin, S.E. & Bae, D.H. (2013). Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites. Materials Characterization. 83, 170-177. DOI: 10.1016/j.matchar.2013.05.018.
[34] Zhou, W., Bang, S., Kurita, H., Miyazaki, T., Fan, Y. & Kawasaki, A. (2016). Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon. 96, 919-928. DOI: 10.1016/j.carbon.2015.10.016.
[35] Liu, Z.Y., Xiao, B.L., Wang, W.G. & Ma, Z.Y. (2012). Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon. 50(5), 1843-1852. DOI: 10.1016/j.carbon.2011.12.034.
[36] Li, Z.W., Lin, R.B., Hu, L., Yu, Z.Y., Yan, L.P., Tan, Z.Q., Fan, G.L., Li, Z.Q. & Zhang, D. (2017). CNTs/Al interfacial reaction degree and the relationship with mechanical performance of composite. Materials For Mechanical Engineering. 41(11), 19-22+28. DOI: 10.11973/jxgcc1201711003.
[37] Zhang, X.X., Wei, H.M., Li, A.B., Fu, Y.D. & Geng, L. (2013). Effect of hot extrusion and heat treatment on CNTs–Al interfacial bond strength in hybrid aluminium composites. Composite Interfaces. 20(4), 231-239. DOI: 10.1080/15685543.2013.793093.
[38] Wu, G. H., Jiang, L.T., Chen, G.Q. & Zhang, Q. (2012). Research progress on the control of interfacial reactions in metal matrix composites. Materials China. 31(7), 51-58. DOI: CNKI:SUN:XJKB.0.2012-07-009.
[39] Chen, B., Shen, J., Ye, X., Imai, H., Umeda, J., Takahashi, M. & Kondoh, K. (2017). Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon. 114, 198-208. DOI: 10.1016/j.carbon.2016.12.013.
[40] Ci, L., Ryu, Z., Jin-Phillipp, N.Y. & Rühle, M. (2006). Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Materialia. 54(20), 5367-5375. DOI: 10.1016/j.actamat.2006.06.031.
[41] Jiang, L., Li, Z., Fan, G., Cao, L. & Zhang, D. (2012). Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scripta Materialia. 66(6), 331-334. DOI: 10.1016/j.scriptamat.2011.11.023.
[42] Xu, S.J., Xiao, B.L., Liu, Z.Y., Wang, W.G. & Ma, Z.Y. (2012). Micorstrures and mechanical properties of CNT/Al conposites fabricated by high energy ball-milling method. Acta Metallurgica Sinica. 48(7), 882-888. DOI: 10.3724/SP.J.1037.2012.00140.
[43] Raviathul Basariya, M., Srivastava, V.C. & Mukhopadhyay, N.K. (2014). Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling. Materials & Design. 64, 542-549. DOI: 10.1016/j.matdes.2014.08.019.
[44] Yoo, S.J., Han, S.H. & Kim, W.J. (2013). Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes. Scripta Materialia. 68(9), 711-714. DOI: 10.1016/j.scriptamat.2013.01.013.
[45] Le, G., Cai, X.L., Wang, K.J., Wang, X.F., Sun, H.P. & Chen, Y,G. (2013). Experimental study on interfacial reaction of CNTs/Al matrix composites. Mining And Metallurgical Engineering. 33(1), 109-112. DOI: 10.3969/j.issn.0253-6099.2013.01.027.
[46] Majid, M., Majzoobi, G.H., Noozad, G.A., Reihani, A., Mortazavi, S.Z. & Gorji, M.S. (2012). Fabrication and mechanical properties of MWCNTs-reinforced aluminum composites by hot extrusion. Rare Metals. 31(4), 372-378. DOI: 10.1007/s12598-012-0523-6.
[47] Zhu, X., Zhao, Y.G., Wu, M., Wang, H.Y. & Jiang, Q.C. (2016), Effect of initial aluminum alloy particle size on the damage of carbon nanotubes during ball milling. Materials (Basel). 9(3), 173. DOI: 10.3390/ma9030173.
[48] Ji, W., Wang, W.J., Meng, F.D., Huang, J.J., Wu, Z.Q., He, W. & Wu, H. (2021), Study on interfacial bonding of aluminum matrix composites reinforced by carbon nanotubes with potassium fluoroaluminate. Hot Working Technology. 50(6), 71-74. DOI: 10.14158/j.cnki.1001-3814.20193526.
[49] Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M. & Lanka, S. (2010). Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Composites Science and Technology. 70(16), 2237-2241. DOI: 10.1016/j.compscitech.2010.05.004.
[50] Peng, T. & Chang, I. (2014). Mechanical alloying of multi-walled carbon nanotubes reinforced aluminum composite powder. Powder Technology. 266, 7-15. DOI: 10.1016/j.powtec.2014.05.068.
[51] Kwon, H., Saarna, M., Yoon, S., Weidenkaff, A. & Leparoux, M. (2014). Effect of milling time on dual-nanoparticulate-reinforced aluminum alloy matrix composite materials. Materials Science and Engineering: A. 590, 338-345. DOI: 10.1016/j.msea.2013.10.046.
[52] Tang, J.J, Li, C.J. & Zhu, X.K. (2012). Progress of the current interface research on carbon nanotubes reinforced Aluminum-matrix composites. Materials Review. 26(11), 149-152. DOI: CNKI:SUN:CLDB.0.2012-11-033.
[53] Li, J.R., Jiang, X.S., Liu, W.X., Li, X. & Zhu, D.G. (2015). Research progress of the interface characteristic and strengthening mechanism in carbon nanotube reinforced Aluminum matrix composites. Materials Review. 29(1), 31-35+42. DOI: 10.11896/j.issn.1005-023X.2015.01.005.
[54] So, K.P., Lee, I.H., Duong, D.L., Kim, T.H., Lim, S.C., An, K.H. & Lee, Y.H. (2011). Improving the wettability of aluminum on carbon nanotubes. Acta Materialia. 59(9), 3313-3320. DOI: 10.1016/j.actamat.2011.01.061.
[55] Zeng, M.Q. & Ou Yang, L. Z. (2002). Progress in research on interface of composite material. China Foundy Machinery & Technoligy. 6, 23-26. DOI: CNKI:SUN:ZZSB.0.2002-06-008.
[56] Jiang, L., Fan, G., Li, Z., Kai, X., Zhang, D., Chen, Z., Humphries, S., Heness, G. & Yeung, W.Y. (2011). An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon. 49(6), 1965-1971. DOI: 10.1016/j.carbon.2011.01.021.
[57] Huang, Y., Ouyang, Q., Zhang, D., Zhu, J., Li, R. & Yu, H. (2014). Carbon materials reinforced aluminum composites: a review. Acta Metallurgica Sinica (English Letters). 27(5), 775-786. DOI: 10.1007/s40195-014-0160-1.
[58] So, K.P., Biswas, C., Lim, S.C., An, K.H. & Lee, Y.H. (2011). Electroplating formation of Al–C covalent bonds on multiwalled carbon nanotubes. Synthetic Metals. 161(3-4), 208-212. DOI: 10.1016/j.synthmet.2010.10.023.
[59] Arai, S., Suzuki, Y., Nakagawa, J., Yamamoto, T. & Endo, M. (2012). Fabrication of metal coated carbon nanotubes by electroless deposition for improved wettability with molten aluminum. Surface and Coatings Technology. 212, 207-213. DOI: 10.1016/j.surfcoat.2012.09.051.
[60] Jagannatham, M., Sankaran, S. & Haridoss, P. (2015). Microstructure and mechanical behavior of copper coated multiwall carbon nanotubes reinforced aluminum composites. Materials Science and Engineering: A. 638, 197-207. DOI: 10.1016/j.msea.2015.04.070.
[61] So, K.P., Jeong, J.C., Park, J.G., Park, H.K., Choi, Y.H., Noh, D.H., Keum, D.H., Jeong, H.Y., Biswas, C., Hong, C.H. & Lee, Y,H. (2013). SiC formation on carbon nanotube surface for improving wettability with aluminum. Composites Science and Technology. 74, 6-13. DOI: 10.1016/j.compscitech.2012.09.014.
[62] Wang, H. & Zhu, Y.L. (2019). Pretreatment and copper plating of carbon nanotubes by electroless deposition. Surface Technology. 48(11), 211-218. DOI: 10.16490/j.cnki.issn.1001-3660.2019.11.022.
[63] Lahiri, D., Bakshi, S.R., Keshri, A.K., Liu, Y. & Agarwal. A. (2009). Dual strengthening mechanisms induced by carbon nanotubes in roll bonded aluminum composites. Materials Science and Engineering: A. 523(1-2), 263-270. DOI: 10.1016/j.msea.2009.06.006.
[64] Liu, B., Deng, F.M. & Qu, J.X. (2003). Design and research of carbon nanotubes reinforced aluminum matrix composite. Ordnance Material Science and Engineering. 6, 54-57+69. DOI: 10.14024/j.cnki.1004-244x.2003.06.016.
[65] Zheng, Q.W. & Fan, T.X. (2022). Experimental and simulation methods on liquid/solid interface wettability considering crystal surfaces. Materials Reports. 9, 1-23.
[66] Han, X.D., Li, Z.Q., Fan, G.L., Jiang, L. & Zhang, D. (2012). Progress in fabrication technique of carbon nanotubes reinforced Al matrix composites. Materials Reports. 26(21), 40-46.DOI: CNKI:SUN:CLDB.0.2012-21-010.
[67] Oh, S-I., Lim, J-Y., Kim, Y-C., Yoon, J., Kim, G-H., Lee, J., Sung, Y-M. & Han, J-H. (2012). Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process. Journal of Alloys and Compounds. 542, 111-117. DOI: 10.1016/j.jallcom.2012.07.029.
[68] Bi, S., Xiao, B.L., Ji, Z.H., Liu, B.S., Liu, Z.Y. & Ma, Z.Y. (2020). Dispersion and damage of carbon nanotubes in carbon nanotube/7055Al composites during high-energy ball milling process. Acta Metallurgica Sinica (English Letters). 34(2), 196-204. DOI: 10.1007/s40195-020-01138-5.
[69] Guo, B., Zhang, X., Cen, X., Wang, X., Song, M., Ni, S., Yi, J., Shen, T. & Du, Y. (2018). Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes. Materials Characterization. 136, 272-280. DOI: 10.1016/j.matchar.2017.12.032.
[70] Aristizabal, K., Katzensteiner, A., Bachmaier, A., Mücklich, F. & Suarez, S. (2017). Study of the structural defects on carbon nanotubes in metal matrix composites processed by severe plastic deformation. Carbon. 125, 156-161. DOI: 10.1016/j.carbon.2017.09.075.
[71] Li, H., Kang, J., He, C., Zhao, N., Liang, C. & Li, B. (2013). Mechanical properties and interfacial analysis of aluminum matrix composites reinforced by carbon nanotubes with diverse structures. Materials Science and Engineering: A. 577, 120-124. DOI: 10.1016/j.msea.2013.04.035.
[72] Serp, P. & Castillejos, E. (2010). Catalysis in carbon nanotubes. ChemCatChem. 2(1), 41-47. DOI: 10.1002/cctc.200900283.
[73] Liyong, T., Xiannian, S. & Ping, T. (2008). Effect of long multi-walled carbon nanotubes on delamination toughness of laminated composites. Journal of Composite Materials. 42(1), 5-23. DOI: 10.1177/0021998307086186.
[74] Wang, L., Choi, H., Myoung, J-M. & Lee, W. (2009). Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites. Carbon. 47(15), 3427-3433. DOI: 10.1016/j.carbon.2009.08.007.
[75] Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M. & Lanka, S. (2011). The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Composites Part A: Applied Science and Manufacturing. 42(3), 234-243. DOI: 10.1016/j.compositesa.2010.11.008.
[76] Hassan, M.T.Z., Esawi, A.M.K. & Metwalli, S. (2014). Effect of carbon nanotube damage on the mechanical properties of aluminium–carbon nanotube composites. Journal of Alloys and Compounds. 607, 215-222. DOI: 10.1016/j.jallcom.2014.03.174.
[77] Jiang, J.L., Zhao, S.J., Yang, H. & Li, W. X. (2008). Mechanical properties of Al matrix composites reinforced with carbon nanotubes prepared by powdermetallurgy. Transactions Of Materials And Heat Treatment. 3, 6-9. DOI: 10.13289/j.issn.1009-6264.2008.03.002.
[78] Liao, J-Z., Tan, M-J. & Sridhar, I. (2010). Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Materials & Design. 31, S96-S100. DOI: 10.1016/j.matdes.2009.10.022.
[79] Chen, B., Imai, H., Umeda, J., Takahashi, M. & Kondoh, K. (2017). Effect of spark-plasma-sintering conditions on tensile properties of aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs). Jom. 69(4), 669-675. DOI: 10.1007/s11837-017-2263-4.
[80] Choi, H.J., Shin, J.H. & Bae, D. H. (2011). Grain size effect on the strengthening behavior of aluminum-based composites containing multi-walled carbon nanotubes. Composites Science and Technology. 71(15), 1699-1705. DOI: 10.1016/j.compscitech.2011.07.013.
[81] Etter, T., Schulz, P., Weber, M., Metz, J., Wimmler, M., Löffler, J.F. & Uggowitzer, P.J. (2007). Aluminium carbide formation in interpenetrating graphite/aluminium composites. Materials Science and Engineering: A. 448(1-2), 1-6. DOI: 10.1016/j.msea.2006.11.088.
[82] Huang, Y.P., Li, D.H. & Huang, W. (2004), Preparation and property of pure AMC reinforced by CNTs. New technology and new process. 12, 48-49. DOI: CNKI:SUN:XJXG.0.2004-12-021.
[83] Aborkin, A., Khorkov, K., Prusov, E., Ob'edkov, A., Kremlev, K., Perezhogin, I. & Alymov, M. (2019). Effect of increasing the strength of aluminum matrix nanocomposites reinforced with microadditions of multiwalled carbon nanotubes coated with TiC nanoparticles. Nanomaterials (Basel). 9(11), 1596. DOI: 10.3390/nano9111596.
[84] Zhou, W., Sasaki, S. & Kawasaki, A. (2014). Effective control of nanodefects in multiwalled carbon nanotubes by acid treatment. Carbon. 78, 121-129. DOI: 10.1016/j.carbon.2014.06.055.
[85] Wang, L., Ge, L., Rufford, T.E., Chen, J., Zhou, W., Zhu, Z. & Rudolph, V. (2011). A comparison study of catalytic oxidation and acid oxidation to prepare carbon nanotubes for filling with Ru nanoparticles. Carbon. 49(6), 2022-2032. DOI: 10.1016/j.carbon.2011.01.028.
[86] Kim, K.T., Cha, S.I., Gemming, T., Eckert, J. & Hong, S.H. (2008). The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites. Small. 4(11), 1936-1940. DOI: 10.1002/smll.200701223.
[87] Liao, J. & Tan, M-J. (2011). Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use. Powder Technology. 208(1), 42-48. DOI: 10.1016/j.powtec.2010.12.001.
[88] Fan, B.B., Wang, B.B., Chen, H., Wang, G.J. & Zhang, Y. (2013). Preparation and properties of carbon CNTs/Al matrix composites. Journal Of Shenyang University (Natural Science). 25(2), 128-131. DOI: CNKI:SUN:SYDA.0.2013-02-011.
Go to article

Authors and Affiliations

Rong Li
1
ORCID: ORCID
Zhilin Pan
1
ORCID: ORCID
Qi. Zeng
ORCID: ORCID
Xiaoli Ye
1

  1. School of Mechanical & Electrical Engineering Guizhou Normal University, Guyiang, Guizhou, China
Download PDF Download RIS Download Bibtex

Abstract

In this study, stainless steel 316L and Inconel 625 alloy powders were additively manufactured by using directed energy deposition process. And heat treatment effect on hardness and microstructures of the bonded stainless steel 316L/Inconel 625 sample was investigated. The microstructures shows there are no secondary phases and big inclusions near interfacial region between stainless steel 316L and Inconel 625 except several small cracks. The results of TEM and Vickers Hardness show the interfacial area have a few tens of micrometers in thickness. Interestingly, as the heat treatment temperature increases, the cracks in the stainless steel region does not change in morphology while both hardness values of stainless steel 316L and Inconel 625 decrease. These results can be used for designing pipes and valves with surface treatment of Inconel material based on stainless steel 316L material using the directed energy deposition.
Go to article

Bibliography

[1] G .H. Shin, J.P. Choi, K.T. Kim, B.K. Kimm, J.H. Yu, J. Korean Powder Metall. Inst. 24, 210 (2017).
[2] A. Ambrosi, M. Pumera, Chem. Soc. Rev. 45, 2740 (2016).
[3] G .S. Lee, Y.S. Eom, K.T. Kim, B.K. Kim, J. H. Yu, J. Korean Powder Metall. Inst. 26, 138 (2019).
[4] Y.S. Eom, D.W. Kim, K.T. Kim, S.S. Yang, J. Choe, I. Son, J.H. Yu, J. Korean Powder Metall. Inst. 27, 103 (2020).
[5] J. Hwang, S. Shin, J. Lee, S. Kim, H. Kim, Journal of Welding and Joining 35, 28 (2017).
[6] I . Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies, Springer New York, 245 (2015).
[7] A. Saboori, D. Gallo, S. Biamino, P. Fino, M. Lombardi, Appl. Sci. 7, 883 (2017).
[8] J.S. Park, M.-G. Lee, Y.-J. Cho, J. H. Sung, M.-S. Jeong, S.-K. Lee, Y.-J. Choi, D.H. Kim, Met. Mater. Int. 22, 143 (2016).
[9] R . Koike, I. Unotoro, Y. Kakinuma, Y. Oda, Int. J. Autom. Techno. 13, 3 (2019).
[10] D.R. Feenstra, A. Molotnikov, N. Birbilis, J. Mater. Sci. 55, 13314- 13328 (2020).
[11] B.E. Carroll, R.A. Otis, J.P. Borgonia, J. Suh, R.P. Dillon, A.A. Shapiro, D.C. Hofmann, Z.-K. Liu, A. M. Beese, Acta Mater. 108, 46 (2016).
[12] T. Abe, H. Sasahara, Precis. Eng. 45, 387 (2016).
[13] G.H. Aydoğdu, M.K. Aydinol, Corros. Sci. 48, 3565 (2006).
[14] H.Y. Al-Fadhli, J. Stokes, M.S.J. Hashmi, B.S. Yilbas, Surf. Coat. Technol. 200, 20 (2006).
[15] Y.S. Eom, K.T. Kim, S. Jung, J.H. Yu, D.Y. Yang, J. Choe, C.Y. Sim, S.J. An, J. Korean Powder Metall. Inst. 27, 219 (2020).
Go to article

Authors and Affiliations

Yeong Seong Eom
1 2
Kyung Tae Kim
1
Dong Won Kim
1
Ji Hun Yu
1
Chul Yong Sim
3
Seung Jun An
3
Yong-Ha Park
4
Injoon Son
2
ORCID: ORCID

  1. Korea Institute of Materials Science, 797 Changwon-daero, Changwon, Republic of Korea
  2. Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
  3. Insstek, Daejeon, Republic of Korea
  4. Samsung Heavy Industries, Geoje-si, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

WC-8Co cemented carbide was prepared by a high-temperature liquid phase sintering in argon at 5-200 Pa. Three microtextured grooves with a spacing of 500, 750, and 1000 μm were prepared on the surface of WC-8Co cemented carbide. TiAlCrSiN multi-element hard coating was deposited on the WC-8Co cemented carbide microtextured surface with multi-arc ion plating technology. The Vickers hardness and fracture toughness of coated and uncoated WC-8Co cemented carbide with or without a microtextured surface were investigated. The effect of different microtextured spacing on the interface bonding strength of the TiAlCrSiN coating was analyzed. The results show that with the reduction of the microtextured spacing, the Vickers hardness of the cemented carbide slightly decreases, and the fracture toughness slightly increases. The microtextured surface can improve the interface bonding strength between the coating and the substrate. The smaller the microtextured spacing, the larger the specific surface area and the higher the surface energy, so the interface bonding strength between the coating and the substrate increases.
Go to article

Authors and Affiliations

ManFeng Gong
1 2
GuangFa Liu
1 2
Meng Li
1 3
XiaoQun Xia
1
Lei Wang
1
ORCID: ORCID
JianFeng Wu
1 2
ShanHua Zhang
1 2
Fang Mei
1

  1. Lingnan Normal University, School of Mechatronics Engineering, Zhanjiang 524048, China
  2. Guangdong Ocean University, School of Mechanical Engineering, Zhanjiang 524088, China
  3. Northwestern Polytechnical University, School of Materials Science and Engineering, Xian 710072, China
Download PDF Download RIS Download Bibtex

Abstract

Dzięki mózgowi pokonujemy kolejne granice poznania. Jednocześnie zgłębianie tajemnic mózgu stawia granice najtrudniejsze do przekroczenia.
Go to article

Authors and Affiliations

Piotr Durka
Krystian Dereziński
Download PDF Download RIS Download Bibtex

Abstract

Directional solidification of the Fe - 4,3 wt % C alloy was performed with the pulling rate equal to v=83 μm/s. Sample was frozen during

solidification to reveal the shape of the solid/liquid interface. Structures eutectic pyramid and spherolitic eutectic were observed. The

solidification front of ledeburite eutectic was revealed. The leading phase was identified and defined.

Go to article

Authors and Affiliations

M. Trepczyńska-Łent
E. Olejnik
Download PDF Download RIS Download Bibtex

Abstract

In sand moulds, at a distance of 3 mm from the metal- mould interface, the sensors of temperature, and of oxygen and hydrogen content were installed. Temperature and the evolution of partial gas pressure have been analysed in moulds bonded with bentonite with or without the addition of seacoal, water glass or furan resin. Moulds were poured with ductile iron. For comparison, also tests with the grey iron have been executed. It was found that the gas atmosphere near the interface depends mainly on the content of a carbonaceous substance in the mould. In the green sand moulds with 5% of seacoal or bonded with furan resin, after the mould filling, a sudden increase in the hydrogen content and the drop of oxygen is observed. This gas evolution results from the oxidation of carbon and reduction of water vapour in the mould material, and also from the reduction of water vapour and alloy reoxidation. In carbon-free sand, the evolution in the gas composition is slower because water vapour is reduced only at the interface. Changes of oxygen and hydrogen content in the controlled zone are determined by the transport phenomena.

Go to article

Authors and Affiliations

J. Mocek
A. Chojecki
Download PDF Download RIS Download Bibtex

Abstract

The objective of the present research is to develop the novel multi-compaction technology to produce hybrid structure in powder metallurgy (P/M) components using dissimilar Fe-based alloys. Two distinct powder alloys with different compositions were are used in this study: Fe-Cr-Mo-C pre-alloyed powder for high strength and Fe-Cu-C mixed powder for enhanced machinability and lower material cost. Initially, Fe-Cu-C was pre-compacted using a bar-shaped die with lower compaction pressure. The green compact of Fe-Cu-C alloy was inserted into a die residing a half of the die, and another half of the die was filled with the Fe-Cr-Mo-C powder. Then they subsequently underwent re-compaction with higher pressure. The final compact was sintered at 1120°C for 60 min. In order to determine the mechanical behavior, transverse rupture strength (TRS) and Vickers hardness of sintered materials were measured and correlated with density variations. The microstructure was characterized using optical microscope and scanning electron microscope to investigate the interfacial characteristics between dissimilar P/M alloys.

Go to article

Authors and Affiliations

Min Chul Oh
Hyunjoo Seok
Yeongcheol Jo
Byungmin Ahn
Download PDF Download RIS Download Bibtex

Abstract

This paper describes the prototype version of a mobile application supporting independent movement of the blind. Its objective is to improve the quality of life of visually impaired people, providing them with navigational assistance in urban areas. The authors present the most important modules of the application. The module for precise positioning using DGPS data from the ASG-EUPOS network as well as enhancements of positioning in urban areas, based on the fusion with other types of data sources, are presented. The devices, tools and software for the acquisition and maintenance of dedicated spatial data are also described. The module responsible for navigation with a focus on an algorithms' quality and complexity, as well as the user interface dedicated for the blind are discussed. The system's main advantages over existing solutions are emphasized, current results are described, and plans for future work briefly outlined.

Go to article

Authors and Affiliations

Łukasz Kamiński
Krzysztof Bruniecki
Download PDF Download RIS Download Bibtex

Abstract

The article presents the analysis of the simulation test results for three variants of the power electronics used as interface between the power network and superconducting magnetic energy storage (SMES) with the following parameters: power of 250 kW, current of 500 A DC and voltage of 500 V DC. Three interface topologies were analyzed: two-level AC-DC and DC-DC converters; three-level systems and mixed systems combining a three-level active rectifier and a two-level DC-DC converter. The following criteria were considered: input and output current and voltage distortions, determined as THDi and THDu, power losses in power electronics components; cost of the semiconductor components for each topology and total cost of the interface. Results of the analysis showed that for high-power low-voltage and high-current power electronics systems, the most advantageous solution from a technical and economical perspective is a two-level interface configuration in relation to both AC-DC and DC-DC converters.

Go to article

Authors and Affiliations

A. Domino
K. Zymmer
M. Parchomiuk

This page uses 'cookies'. Learn more