Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to develop Fe/Al multilayered metallic/intermetallic composites produced by hot pressing under an air atmosphere. Analyses were carried out on the composite plates made up of alternatively situated sheets of AA1050 aluminum alloy and DN04 low carbon steel, which were annealed at 903 K for 2, 5, and 10 h. Annealing was performed to obtain reaction layers of distinct thickness. The samples were examined using X-Ray diffraction and scanning and transmission electron microscope equipped with an energy-dispersive X-Ray spectrometer. To correlate the structural changes with mechanical properties, microhardness measurements in near-the-interface layers were performed. All the reaction layers grew with parabolic kinetics with η-Al5Fe2 intermetallic phase as the dominant component. After annealing for 5 and 10 hours, a thin sublayer of θ-Al13Fe4 phase was also detected.
Go to article

Authors and Affiliations

W. Kowalski
1
ORCID: ORCID
H. Paul
1
ORCID: ORCID
I. Mania
1
ORCID: ORCID
P. Petrzak
1
ORCID: ORCID
P. Czaja
1
ORCID: ORCID
R. Chulist
1
ORCID: ORCID
A. Góral
1
ORCID: ORCID
M. Szlezynger
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Al2Cu phase has been obtained by melting pure metals in the electric arc furnace. It has been found that the intermetallic phase undergoes selective corrosion in the H3PO4 aqueous solutions. Aluminium is dissolved, the surface becomes porous and enriched with copper. The corrosion rate equals to 371 ± 17 g·m–2·day–1 (aerated solution) and 284 ± 9 g·m–2·day–1 (deaerated solution). The surface of Al2Cu phase after selective corrosion was characterised by using electrochemical impedance spectroscopy. It was found that the surface area of the specimens increases with temperature due to higher corrosion rate and is between 2137 and 3896 cm2.

Go to article

Authors and Affiliations

P. Kwolek
A. Gradzik
D. Szeliga
B. Kościelniak
Download PDF Download RIS Download Bibtex

Abstract

The research described in this contribution is focused on fractographic analysis of the fracture area of newly developed eutectic silumin type AlSi9NiCuMg0.5 (AA 4032), which was developed and patented by a team of staff of the Faculty of Mechanical Engineering. The paper presents determination of the cause of casting cracks in operating conditions. Fractographic analysis of the fracture area, identification of the structure of the casting, identification of structural components on the surface of the fracture surface and chemical analysis of the material in the area of refraction were performed within the experiment. Al-Si alloys with high specific strength, low density, and good castability are widely used in pressure-molded components for the automotive and aerospace industries. The results shown that the inter-media phases Fe-Al and Fe-Si in aluminium alloys lead to breakage across the entire casting section and a crack that crossed the entire cross section, which was confirmed by EDS analysis.

Go to article

Authors and Affiliations

I. Hren
J. Svobodova
Š. Michna
Download PDF Download RIS Download Bibtex

Abstract

Purpose: The influence of age-hardening solution treatment at temperature 515 degrees centigrade with holding time 4 hours, water quenching at 40 degrees centigrade and artificial aging by different temperature 130, 150, 170 and 210 degrees centigrade with different holding time 2, 4, 8, 16 and 32 hours on changes in morphology of Fe-rich Al15(FeMn)3Si2and Cu-rich (Al2Cu, Al-Al2Cu-Si) intermetallic phases in recycled AlSi9Cu3 cast alloy. Material/Methods: Recycled (secondary) AlSi9Cu3 cast alloy is used especially in automotive industry (dynamic exposed cast, engine parts, cylinder heads, pistons and so on). Microstructure was observed using a combination of different analytical techniques (scanning electron microscopy upon standard and deep etching and energy dispersive X-ray analysis – EDX) which have been used for the identification of the various phases. Quantitative study of changes in morphology of phases was carried out using Image Analyzer software NIS-Elements. The mechanical properties (Brinell hardness and tensile strength) were measured in line with STN EN ISO. Results/Conclusion: Age-hardening led to changes in microstructure include the spheroidization of eutectic silicon, gradual disintegration, shortening and thinning of Fe-rich intermetallic phases and Al-Al2Cu-Si phases were fragmented, dissolved and redistributed within alpha-matrix. These changes led to increase in the hardness and tensile strength in the alloy.

Go to article

Authors and Affiliations

Lenka Hurtalová
Eva Tillová
Mária Chalupová
Download PDF Download RIS Download Bibtex

Abstract

Sodium orthovanadate was tested as a corrosion inhibitor of intermetallic Al2Cu in 1 M H3PO4. The Al2Cu – H3PO4 – Na3VO4 system was studied using the following methods: inductively coupled plasma optical emission spectrometry, scanning electron microscopy with energy dispersive x-ray spectroscopy, x-ray diffraction, electrochemical impedance spectroscopy, polarisation and open circuit potential. It was found that the corrosion rate decreased as the inhibitor concentration increased. The highest inhibition efficiency 99% was obtained when sodium orthovanadate initial concentration was equal to 100 mM, pH = 1.11, due to precipitation of a protective layer of insoluble salt, containing vanadium, phosphorus, sodium and oxygen, on the surface. At pH = 0.76 the protective layer was not formed and inhibition efficiency decreased to 76%. Selective corrosion of the intermetallic phase caused a significant increase of an electric double layer capacitance and decrease of a charge transfer resistance.

Go to article

Authors and Affiliations

P. Kwolek
Download PDF Download RIS Download Bibtex

Abstract

This article deals with the effect of manganese that is the most applied element to eliminate the negative effect of iron in the investigated alloy AlSi7Mg0.3. In this time are several methods that are used for elimination harmful effect of iron. The most used method is elimination by applying the additive elements, so-called iron correctors. The influence of manganese on the morphology of excluded ironbased intermetallic phases was analysed at various iron contents (0.4; 0.8 and 1.2 wt. %). The effect of manganese was assessed in additions of 0.1; 0.2; 0.4 and 0.6 wt. % Mn. The morphology of iron intermetallic phases was assessed using electron microscopy (SEM) and EDX analysis. The increase of iron content in investigated alloys caused the formation of more intermetallic phases and this effect has been more significant with higher concentrations of manganese. The measurements carried out also showed that alloys with the same Mn/Fe ratio can manifest different structures and characteristics of excluded iron-based intermetallic phases, which might, at the same time, be related to different resulting mechanical properties.

Go to article

Authors and Affiliations

D. Bolibruchova
R. Podprocká
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of a selected grade of high silicon cast iron intended for work in corrosive and abrasive conditions. The text describes its microstructure taking into account the process of crystallization, TDA analysis, EDS, XRD and the chemical composition analysis. In order to determine the phase composition, X-ray diffraction tests were carried out. The tests were executed on a Panalytical X'Pert PRO X-ray diffractometer with filtration of radiation from a lamp with copper anode and PIXcel 3D detector on the deflected beam axis. Completed tests allowed to describe the microstructure with detailed consideration of intermetallic phases present in the alloy. Results of the analysis of the examined alloy clearly show that we deal with intermetallic phases of Fe3Si, Fe5Si3 types, as well as silicon ferrite and crystals of silicon. In the examined alloy, we observed the phenomenon of segregation of carbon, which, as a result of this process, enriches the surface of silicon crystals, not creating a compound with it. Moreover, the paper demonstrates capability for crystallization of spheroidal graphite in the examined alloy despite lack of elements that contribute to balling in the charge materials.

Go to article

Authors and Affiliations

M. Stawarz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Presence of iron in Al-Si cast alloys is common problem mainly in secondary (recycled) aluminium alloys. Better understanding of iron

influence in this kind of alloys can lead to reduction of final castings cost. Presented article deals with examination of detrimental iron

effect in AlSi10MgMn cast alloy. Microstructural analysis and ultimate tensile strength testing were used to consider influence of iron to

microstructure and mechanical properties of selected alloy

Go to article

Authors and Affiliations

M. Žihalová
D. Bolibruchová
Download PDF Download RIS Download Bibtex

Abstract

The cooling rate is one of the main tools available to the process engineer by means of which it is possible to influence the crystallisation

process. Imposing a desired microstructure on a casting as early as in the casting solidification phase widens significantly the scope of

technological options at disposal in the process of aluminium-silicon alloy parts design and application. By changing the cooling rate it is

possible to influence the course of the crystallisation process and thus also the material properties of individual microstructure

components. In the study reported in this paper it has been found that the increase of cooling rate within the range of solidification

temperatures of a complex aluminium-silicon alloy resulted in a decrease of values of the instrumented indentation hardness (HIT) and the

instrumented indentation elastic modulus (EIT) characterising the intermetallic phase occurring in the form of polygons, rich in aluminium,

iron, silicon, manganese, and chromium, containing also copper, nickel, and vanadium. Increased cooling rate resulted in supersaturation

of the matrix with alloying elements.

Go to article

Authors and Affiliations

A. Trytek
M. Tupaj
M. Mróz
A.W. Orłowicz
O. Markowska

This page uses 'cookies'. Learn more