Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Climate change is driving the transformation of energy systems from fossil to renewable energies. In industry, power supply systems and electro-mobility, the need for electrical energy storage is rising sharply. Lithium-based batteries are one of the most widely used technologies. Operating parameters must be determined to control the storage system within the approved operating limits. Operating outside the limits, i.e., exceeding or falling below the permitted cell voltage, can lead to faster aging or destruction of the cell. Accurate cell information is required for optimal and efficient system operation. The key is high-precision measurements, sufficiently accurate battery cell and system models, and efficient control algorithms. Increasing demands on the efficiency and dynamics of better systems require a high degree of accuracy in determining the state of health and state of charge (SOC). These scientific contributions to the above topics are divided into two parts. In the first part of the paper, a holistic overview of the main SOC assessment methods is given. Physical measurement methods, battery modeling, and the methodology of using the model as a digital twin of a battery are addressed and discussed. In addition, adaptive methods and artificial intelligence methods that are important for SOC calculation are presented. Part two of the paper presents examples of the application areas and discusses their accuracy.
Go to article

Authors and Affiliations

Marcel Hallmann
1
ORCID: ORCID
Christoph Wenge
2
ORCID: ORCID
Przemyslaw Komarnicki
1
ORCID: ORCID

  1. Magdeburg–Stendal University of Applied Sciences, Germany
  2. Fraunhofer IFF Magdeburg, Germany
Download PDF Download RIS Download Bibtex

Abstract

This article discusses selected aspects of the organisation of the academic article introduction – a section of a central academic genre, recognised as both troublesome (Swales 1990) and strategically important, as it is at this stage that the reader forms the fi rst, and often lasting, impressions of the whole text. Based on Swales’ (1990) revised CARS model of article introductions and drawing on previous Polish–English contrastive studies (e.g., Duszak 1994; Golebiowski 1998, 1999), it looks into the placement, realisation, and role of the purpose statement in introductions to articles published in the years 2001-2006 in linguistics-related peer-reviewed Englishand Polish-language journals. It seeks answers to the following questions: (i) Is the statement of purpose a typical/recurrent feature of introductions to Polish-language articles? (ii) If it does occur in Polish, in which part of the introduction is it usually made by Polish authors as compared to English writers? (iii) What is the preferred way of announcing it in both groups of texts? and (iv) Can any assessment be made of its prominence in both languages on the basis of what precedes and what follows it? Contrary to what might have been expected on the basis of previous studies, the article demonstrates that the statement of purpose is in fact a stable element of the introduction to a Polish-language linguistics article, although its prominence depends on the presence of other rhetorical moves.
Go to article

Authors and Affiliations

Krystyna Warchał
Download PDF Download RIS Download Bibtex

Abstract

This article has two outreach aims. It concisely summarizes the main research and technical efforts in the EC H2020 ARIES Integrating Activity – Accelerator Research and Innovation for European Science and Society [1] during the period 2017/2018. ARIES is a continuation of CARE, TIARA and EuCARD projects [2-3]. The article also tries to show these results as an encouragement for local physics and engineering, research and technical communities to participate actively in such important European projects. According to the author’s opinion this participation may be much bigger [4-27]. All the needed components to participate – human, material and infrastructural are there [4,7]. So why the results are not satisfying as they should be? The major research subjects of ARIES are: new methods of particles acceleration including laser, plasma and particle beam interactions, new materials and accelerator components, building new generations of accelerators, energy efficiency and management of large accelerator systems, innovative superconducting magnets, high field and ultra-high gradient magnets, cost lowering, system miniaturization, promotion of innovation originating from accelerator research, industrial applications, and societal implications. Two institutions from Poland participate in ARIES – these are Warsaw University of Technology and Institute of Nuclear Chemistry and Technology in Warsaw. There are not present some of the key institutes active in accelerator technology in Poland. Let this article be a small contribution why Poland, a country of such big research potential, contributes so modestly to the European accelerator infrastructural projects? The article bases on public and internal documents of ARIES project, including the EU Grant Agreement and P1 report. The views presented in the paper are only by the author and not necessarily by the ARIES.

Go to article

Authors and Affiliations

Ryszard S. Romaniuk

This page uses 'cookies'. Learn more